
Problemas con parámetros estadísticos

1 Halla la media, la mediana y la moda con los siguientes datos:

208	180	201	225	163	220	210	197	234	204	231	192	220	206	173
237	227	205	193	223	185	222	181	205	212	196	167	218	192	208
214	195	171	190	209	199	192	165	215	181	228	202	184	187	203
202	179	214	187	172	191	183	202	189	217	177	217	197	169	208

A partir de la siguiente curva de frecuencias acumuladas, y teniendo en cuenta que representa los datos de una encuesta sobre el salario de los españoles en la que se ha preguntado 2 000 personas, halla la mediana y el rango intercuartílico.

3 El número de ocupantes de 100 coches en un peaje de una autopista es el siguiente:

Ocupantes	1	2	3	4	5
Frecuencia	58	26	9	5	2

Halla la media, la mediana y la desviación típica de esta distribución.

4 Halla la mediana, cuartiles y moda de los siguientes conjuntos de números:

b)
$$-5$$
, -2 , -1 , 0 , 3 , 1 , 1 , 1

d)
$$-0.4$$
, -0.2 , -0.1 , $0.0.2$

Solucionario

1
$$\Sigma x_i \cdot f_i = 12\,010; N = 60$$

 $\bar{x} = \frac{12\,010}{60} = 200,17; Me = 205; Mo = 205$

2 Me = 1 250 €,
$$Q_1$$
 = 750 €, Q_3 = 1 500 €, R_i = 1 500 − 750 = 750 €

$$\overline{\mathbf{3}} \ \overline{\mathbf{x}} = \frac{\sum x_i \cdot f_i}{N} = \frac{1 \cdot 58 + 2 \cdot 26 + 3 \cdot 9 + 4 \cdot 5 + 5 \cdot 2}{100} = \frac{167}{100} = 1,67$$

$$Me = 1, \sigma = \sqrt{\frac{\sum (x_i - x)^2 \cdot f_i}{N}} = \sqrt{\frac{94,11}{100}} = 0,970$$

X _i	1	2	3	4	5
f_i	58	26	9	5	2
f. acumulada	58	84	93	98	100
$(x_i - \bar{x})$	-0,67	0,33	1,33	2,33	3,33
$(x_i - \bar{x})^2$	0,4489	0,1089	1,768 9	5,4289	11,0889
$f_i \cdot (x_i - \overline{x})^2$	26,036 2	2,8314	15,9201	27,1445	22,1778

4 a)
$$Me = Q_2 = 3$$
, $Q_1 = 2$, $Q_3 = \frac{6+7}{2}$, $Mo = 2$

b)
$$Me = Q_2 = \frac{-1 + 0.3}{2} = -0.35, Q_1 = -2, Q_3 = 1, Mo = 1$$

c)
$$Me = Q_2 = 63$$
, $Q_1 = \frac{58 + 61}{2} = 59.5$, $Q_3 = \frac{70 + 87}{2} = 78.5$, no hay moda.

d)
$$Me = Q_2 = -0.1$$
, $Q_1 = \frac{-0.2 - 0.4}{2} = -0.3$, $Q_3 = \frac{0 + 0.2}{2} = 0.1$, no hay moda.