¿Cuántos números de tres cifras se puede formar con los dígitos: 0, 1, 2, 3, 4, 5 ?

$$m = 6$$
 $n = 3$

Tenemos que separar el número en dos bloques:

El primer bloque, de un número, lo puede ocupar sólo uno de 5 dígitos porque un número no comienza por cero (excepto los de las matriculas, los de la lotería y otros casos particulares),

$$m = 5$$
 $n = 1$

El segundo bloque, de dos números, lo puede ocupar cualquier dígito.

$$m = 6$$
 $n = 2$

$$V_5^1 \cdot VR_6^2 = 5 \cdot 6^2 = 180$$

En una bodega hay cinco tipos diferentes de botellas. ¿De cuántas formas se pueden elegir cuatro botellas?

No entran todos los elementos. Sólo elijes 4.

No importa el orden. Da igual que elija 2 botellas de anís y 2 de ron, que 2 de ron y 2 de anís.

Sí se repiten los elementos. Puedes elegir más de una botella del mismo tipo.

$$CR_5^4 = \frac{(5+4-1)}{4!(5-1)!} = \frac{8!}{4!\cdot 4!} = 70$$

Con las cifras 1, 2 y 3, ¿cuántos números de cinco cifras pueden formarse? ¿Cuántos son pares?

Sí entran todos los elementos: 3 < 5

Sí importa el orden.

Sí se repiten los elementos.

$$VR_3^5 = 3^5 = 243$$

Si el número es par tan sólo puede terminar en 2.

$$_{-2}$$
 $VR_3^4 = 3^4 = 81$

Un grupo, compuesto por cinco hombres y siete mujeres, forma un comité de 5 hombres y 3 mujeres. De cuántas formas puede formarse, si:

1. Puede pertenecer a él cualquier hombre o mujer.

$$C_5^2 \cdot C_7^3 = 10 \cdot 35 = 350$$

2. Una mujer determinada debe pertenecer al comité.

$$C_5^2 \cdot C_6^2 = 10 \cdot 15 = 150$$

3. Dos hombres determinados no pueden estar en el comité.

$$C_3^2 \cdot C_7^3 = 3 \cdot 35 = 105$$

Con las cifras 2, 2, 2, 3, 3, 3, 4, 4; ¿cuántos números de nueve cifras se pueden formar?

m = 9 a = 3 b = 4 c = 2 a + b + c = 9

Sí entran todos los elementos.

Sí importa el orden.

Sí se repiten los elementos.

$$PR_9^{3,4,2} = \frac{9!}{3! \cdot 4! \cdot 2!} = 1260$$

Con las letras de la palabra *libro*, ¿cuántas ordenaciones distintas se pueden hacer que empiecen por vocal?

La palabra empieza por i u o seguida de las 4 letras restantes tomadas de 4 en 4.

Sí entran todos los elementos.

Sí importa el orden.

No se repiten los elementos.

i _ _ _ _

$$P_2 \cdot P_4 = 2 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 48$$

0 _ _ _ _

Cuatro libros distintos de matemáticas, seis diferentes de física y dos diferentes de química se colocan en un estante. De cuántas formas distintas es posible ordenarlos si:

1. Los libros de cada asignatura deben estar todos juntos.

MMMM FFFFFF QQ

$$P_4 \cdot P_6 \cdot P_2 \cdot P_3 = 4! \cdot 6! \cdot 2! \cdot 3! = 207360$$

2. Solamente los libros de matemáticas deben estar juntos.

<u>MMMMEEEEEEQQ</u>

$$P_9 \cdot P_4 = 9! \cdot 4! = 8709120$$

Halla el número de capicúas de ocho cifras. ¿Cuántos capicúas hay de nueve cifras?

abcdcba $a \neq 0$ $VR_{10}^{4} - VR_{10}^{3} = 10^{4} - 10^{3} = 10000 - 1000 = 9000$ $abcdedcba \qquad a \neq 0$ $VR_{10}^{5} - VR_{10}^{4} = 10^{5} - 10^{4} = 100000 - 10000 = 90000$