UNIVERSIDADES DE ANDALUCÍA, CEUTA, MELILLA Y CENTROS EN MARRUECOS. PRUEBA DE ACCESO Y ADMISIÓN A LA UNIVERSIDAD. CURSO 2018-20119. MATEMÁTICAS II

Instrucciones:

- a) Duración: 1 hora y 30 minutos.
- b) Tienes que elegir entre realizar únicamente los cuatro ejercicios de la Opción A o realizar únicamente los cuatro ejercicios de la Opción B.
- c) Se permitirá el uso de calculadoras que no sean programables, ni gráficas ni con capacidad para almacenar o transmitir datos. No obstante, todos los procesos conducentes a la obtención de resultados deben estar suficientemente justificados.
- d) En la puntuación máxima de cada ejercicio están contemplados 0'25 puntos para valorar la expresión correcta de los procesos y métodos utilizados.

Opción A

Ejercicio 1A.- Según un determinado modelo, la concentración en sangre de cierto medicamento viene dada por la función $C(t) = te^{-t/2} \, mg/ml$, siendo t el tiempo en horas transcurridas desde que se le administra el medicamento al enfermo.

- (a) [2 puntos] Determina, si existe, el valor máximo absoluto de la función y en qué momento se alcanza.
- (b) [0'5 puntos] Sabiendo que la máxima concentración sin peligro para el paciente es 1 mg/ml, señala si en algún momento del tratamiento hay riesgo para el paciente.

Ejercicio 2A.- [2'5 puntos] Dado un número real a > 0, considera la función $f : R \to R$, dada por $f(x) = x^2 - ax$, y la recta y = 2ax. Determina a sabiendo que el área del recinto limitado por la gráfica de f y la recta anterior es 36.

Ejercicio 3A.- [2'5 puntos] Dada la matriz $A = \begin{pmatrix} 5 & 4 & 3 \\ 4 & 2 & 2 \\ 3 & 2 & 1 \end{pmatrix}$, halla la matriz X que cumple que $AX = (A^{-1}A^t + I)^2$,

siendo At la matriz traspuesta de A e I la matriz identidad de orden 3.

Ejercicio 4A.- Considera la recta $r \equiv \begin{cases} x+y+2 &= 0 \\ -y+z+5 &= 0 \end{cases}$ y el plano $\pi \equiv 2x+y-mz=1$.

- (a) [1'25 puntos] Calcula m sabiendo que r y π son paralelos.
- (b) [1'25 puntos] Para m = -1, calcula la distancia entre r y π .

UNIVERSIDADES DE ANDALUCÍA, CEUTA, MELILLA Y CENTROS EN MARRUECOS. PRUEBA DE ACCESO Y ADMISIÓN A LA UNIVERSIDAD. CURSO 2018-20119. MATEMÁTICAS II

Instrucciones:

- a) Duración: 1 hora y 30 minutos.
- b) Tienes que elegir entre realizar únicamente los cuatro ejercicios de la Opción A o realizar únicamente los cuatro ejercicios de la Opción B.
- c) Se permitirá el uso de calculadoras que no sean programables, ni gráficas ni con capacidad para almacenar o transmitir datos. No obstante, todos los procesos conducentes a la obtención de resultados deben estar suficientemente justificados.
- d) En la puntuación máxima de cada ejercicio están contemplados 0'25 puntos para valorar la expresión correcta de los procesos y métodos utilizados.

Opción B

Ejercicio 1B.- [2'5 puntos] Sea $f:(1, e) \to R$ la función definida por $f(x) = \frac{1}{x} + \ln(x)$ para x > 0 (In denota el logaritmo neperiano), determina la recta tangente a la gráfica de f que tiene pendiente de es máxima.

Ejercicio 2B.- Sea $f:[0, \pi/6] \to R$ una función continua y sea F una primitiva de f que cumple $F(0) = \pi/3$ y $F(\pi/6) = \pi$. Calcula:

- (a) [1 punto] $\int_0^{\pi/6} (3f(x) \cos(x)) dx$
- (b) [1'5 puntos] $\int_{0}^{\pi/6} (\text{sen}(F(x)))f(x)dx$.

Ejercicio 3B.- Considera el siguiente sistema de ecuaciones lineales $\begin{cases} x + \lambda y + z = 4 \\ -\lambda x + y + z = 1 \\ x + y + z = \lambda + 3 \end{cases}$

- a) [1'5 puntos] Discute el sistema según los valores de λ .
- b) [0'75 puntos] Resuelve el sistema, si es posible, para $\lambda = 1$.

Ejercicio 4B.- [2'5 puntos] Halla cada uno de los puntos de la recta $r = \begin{cases} x - y = 0 \\ y - z = 0 \end{cases}$ de manera que junto con los puntos A(1,1,0), B(1,0,1) y C(0,1,1) formen un tetraedro de volumen 5/6.