Descomposición factorial de polinomios. Ecuaciones de grado superior

- 1.- x=a es un cero o raíz de un polinomio P(x) si su valor numérico en x=a vale cero (P(a)=0). "Todo polinomio de grado n tiene a lo sumo n raices reales". Las raices de enteras son divisores del término independiente. Para su cálculo se utiliza la regla de Ruffini
- 2.- Teorema del Resto. El resto de la división de un polinomio P(x) por x-a es igual al valor numérico de dicho polinomio por x-a (R=P(a)).

Si la división de P(x) por x-a es exacta entonces x-a es un factor de la desconposición factorial de P(x).

"Descomponer un polinomio factorialmente consiste en hallar dos o más polinomios, no constantes, tales que su producto sea el polinomio dado. Un polinomio se llama irreducible cuando no se puede descomponer en factores."

P(x)/(x-a) es exacta \Leftrightarrow $R=P(a)=0 \Leftrightarrow P(x)$ es divisible por $x-a \Leftrightarrow x-a$ es un factor de P(x)

3.- Caso particular: descomposición factorial de una ecuación de 2º grado. Si ax²+bx+c=0 tiene por raices (soluciones) x_1, x_2 . Entonces $ax^2+bx+c=a(x-x_1)(x-x_2)$ Cálculo de la ecuación conocidas las raíces. (x-x₁)(x-x₂)=0

4.- Métodos para factorizar polinomios:

- Aplicar productos notables
- Sacar factor común
- Hallar las raices $P(x) = a(x x_1)(x x_2)...(x x_n)$
- 1. Comprobar si x=1 y x=3 son raíces de los siguientes polinomios:

$$P_1(x) = x - 3$$
, $P_2(x) = x^2 - 1$, $P_3(x) = x^2 - 5x + 6$; $P_4(x) = x^3 + x^2 - 2x$

- 2. Comprobar si $1+\sqrt{3}$ es raíz de $x^4-2x^3-x^2-2x-2$
- De entre los números 0, 1, 2, 3, 4 ¿cuáles son raices del polinómio $P(x)=x^3-5x^2+4$?
- 4. De los números $1, 0, \sqrt{2}, -1, 2y-3$ decir cuáles son raíces y cuáles no, de cada uno de los polinomios

a)
$$P(x) = x^4 + 4x^3 + 3x^2$$
 b) $Q(x) = 2x^2 + 10x - 28$

a)
$$P(x) = x^4 + 4x^3 + 3x^2$$
 b) $Q(x) = 2x^2 + 10x - 28$
c) $R(x) = x^2 + (1 - \sqrt{2})x - \sqrt{2}$ d) $S(x) = x^3 + (1 + \sqrt{2})x^2 + \sqrt{2}x$

e)
$$I(x) = x$$

Sol: a) sí:0,-1,-3; b) sí:2; c) sí:
$$\sqrt{2}$$
, -1, d) sí: 0, -1, e) sí: 0

5. Utilizando la regla de Ruffini, dar el cociente y el resto de las siguientes divisiones:

a)
$$P(x) = 3x^4 - 5x^3 + 2x^2 - x + 6$$
 por $x - 3$ b) $P(x) = 5x^4 - 2x^2 + 5$ por $x + 1$

b)
$$P(x) = 5x^4 - 2x^2 + 5$$
 por $x + 1$

c)
$$P(x) = 8x^3 - 5x^4 + 6x^2 - x + 8$$
 por $x - 2$ d) $P(x) = 6x^3 - x + 16$ por $x + 3$

d)
$$P(x) = 6x^3 - x + 16$$
 por $x + 3$

- Comprobar que se verifica el Teorema del Resto en las divisiones del ejercicio anterior.
- Indicar, sin hacer la división si P(x) es divisible por D(x):

a)
$$P(x) = 3x^3 - 21x + 18$$
; $D(x) = x + 3$

b)
$$P(x) = 7x^4 - 5x^3 + 3x^2 - 4x - 1$$
; $D(x) = x - 1$

c)
$$P(x) = \frac{1}{4}x + \frac{3}{2}x^3 + \frac{1}{4}x^2 - \frac{1}{2} + 4x^5$$
; $D(x) = x - \frac{1}{2}$ Sol: son todos

8. Como
$$x^2 + 2x + 1 = (x+1)^2$$
, decir si es cierto: a) $(x+1) | (x^2 + 2x + 1)$ b) $(x^2 + 2x + 1) | (x+1)$

b)
$$(x^2 + 2x + 1) | (x + 1)$$

¿Cuál es el polinomio divisor? ¿Es $x^2 + 2x + 1$ múltiplo de x + 1? Sol: x + 1 es divisor y $x^2 + 2x + 1$ es un múltiplo.

9. Como
$$x^2 - 4x + 4 = (x - 2)^2$$
, decir si es cierto: a) $(x - 2) | (x^2 - 4x + 4) | (x - 2) |$

a)
$$(x-2)|(x^2-4x+4)$$
 b) $(x^2-4x+4)|(x-2)|$

¿Cuál es el polinomio divisor? ¿Es $x^2 - 4x + 4$ múltiplo de x - 2 ? ¿Es x - 2 divisible por $x^2 - 4x + 4$? Sol: cierto a); x-2; sí; no.

- 10. Encontrar 3 polinomios divisibles por a) $3x^2 + 4x 1$, b) $(x-1)^2$ Sol: a) $9x^2+12x-3$; $3x^4+4x^3-x^2$; $3x^3+7x^2+3x-1$, b) $7(x-1)^2$; $(x-1)^4$, $(x-1)^9$
- 11. Encontrar 3 polinomios divisores y dos múltiplos de $p(x)=x^2(x^2-4)$ Sol: x^2 ; x+2; x-2; $x^3(x^2-4)$; $x^2(x^2-4)^2$
- 12. Calcular a para que 3 sea raíz del polinomio $x^3 6x^2 + ax 2$ Sol: a=29/3
- 13. Hallar la descomposición factorial de los siguientes trinomios:

a)
$$p(x)=x^2+2x-3$$

b)
$$p(x)=12x^2-x-1$$

c)
$$p(x)=x^3-x^2-12x$$

a)
$$p(x)=x^2+2x-3$$
 b) $p(x)=12x^2-x-1$ c) $p(x)=x^3-x^2-12x$ d) $p(x)=x(x-1)-6(x-2)$ e) $p(x)=5x-2x^2+3$

e)
$$p(x)=5x-2x^2+3$$

Sol: a) p(x)=(x+3)(x-1), b) p(x)=12(x-1/3)(x+1/4), c) p(x)=x(x-4)(x+3), d) p(x)=(x-4)(x-3) e) p(x)=-2(x-3)(x+1/2)

14. Escribir los polinomios cuyos ceros son:

a)
$$x_1=2$$
; $x_2=3$

b)
$$x_1=-1$$
; $x_2=4$

c)
$$x_1=1/2$$
; $x_2=2$

c)
$$x_1=1/2$$
; $x_2=2$ d) $x_1=-2$; $x_2=-3/2$

Sol: a) $x^2-5x+6=0$, b) $x^2-3x-4=0$, c) $2x^2-5x+2=0$, d) $2x^2+7x+6=0$

15. Factorizar los siguientes polinomios:

a)
$$P(x) = x^3 - 7x^2 + 7x + 15$$

a)
$$P(x) = x^3 - 7x^2 + 7x + 15$$
 b) $P(x) = x^4 + x^3 - 16x^2 - 4x + 48$

c)
$$P(x) = x^3 - 4x$$

d)
$$P(x) = 2x^3 - 4x^2 - 10x + 12$$
 e) $P(x) = (4x^2 - 9)(9x^2 - 16)$

e)
$$P(x) = (4x^2 - 9)(9x^2 - 16)$$

f)
$$P(x) = x^4 - 11x^3 + 41x^2 - 61x + 30$$

g)
$$P(x) = x^3 - 7x^2 + 12x$$

h)
$$P(x) = 6x^4 - 150x^2 + 864$$

Sol: a) (x-1)(x-3)(x-5); b) (x-3)(x+2)(x-2)(x+4), c) x(x-2)(x+2); d) 2(x-1)(x+2)(x-3); e) (2x-3)(2x+3)(3x-4)(3x+4); f) (x-1)(x-2)(x-3)(x-5); g) x(x-3)(x-4); h) P(x)=6(x-3)(x+3)(x-4)(x+4)

16. Hallar al máximo común divisor de los siguientes polinomios:

a)
$$P(x) = (x+5)(x-2)(x^2+3)$$
; $Q(x) = x(x+3)(x-1)(x+5)$

b)
$$P(x) = x^5 - 3x^4 + 3x^3 - 3x^2 + 2x$$
; $Q(x) = x^3 - 2x^2 - x + 2$

c)
$$P(x) = x^4 + 2x^3 - 11x^2 - 12x + 36$$
; $Q(x) = 4x^3 + 6x^2 - 22x - 12$

d)
$$P(x) = x^5 - x^4 + 2x^3 + 1$$
; $Q(x) = x^5 + x^4 + 2x^2 - 1$

e)
$$P(x) = 3x^4 + 9x^3 - 3x^2 - 12x - 9$$
; $Q(x) = 3x^3 + 10x^2 + 2x - 3$

f)
$$P(x) = x^2 + x - 2$$
; $Q(x) = x - 1$

g)
$$P(x) = x^4 - 1$$
; $Q(x) = x^4 - 2x^2 + 1$

h)
$$P(x) = x^2 - 1$$
; $Q(x) = x^2 - 2x + 1$; $R(x) = x^2 + 2x - 3$ i) $P(x) = x^2 + x + 1$; $Q(x) = 2x + 5$

i)
$$P(x) = x^2 + x + 1$$
; $Q(x) = 2x + 5$

Sol: a) x+5, b) x^2-3x+2 , c) x^2+x+6 , d) x^3+x+1 , e) x+3, f) x-1, g) x^2-1 , h) x-1, i) 1

17. Hallar el mínimo común múltiplo de los siguientes polinomios:

$$P(x) = x^2 + x - 12$$
; $Q(x) = x^3 - 9x$

$$P(x) = x^2 + x - 12$$
; $Q(x) = x^3 - 9x$ b) $P(x) = x^2 + x - 12$; $Q(x) = x^2 - 6x + 9$

$$P(x) = x^3 - 7x^2 + 8x - 2$$
; $Q(x) = x^3 - 4x^2 - 10x + 4$ d) $P(x) = x^7 - x$; $Q(x) = x^5 + x^2$

d)
$$P(x) = x^7 - x$$
; $Q(x) = x^5 + x^2$

Sol: a) x(x-3)(x+3)(x+4), b) $(x+4)(x-3)^2$, c) $(x-1)(x^3-4x^2-10x+4)$ d) x^8-x^2 .

18. Resolver las siguientes ecuaciones:

a)
$$x^3 - 7x^2 + 7x + 15 = 0$$

b)
$$x^3 - 2x^2 - x + 2 = 0$$

b)
$$x^3 - 2x^2 - x + 2 = 0$$
 c) $x^4 + x^3 - 16x^2 - 4x + 48 = 0$

d)
$$3x^4 - 2x^3 - 3x^2 + 2x = 0$$

e)
$$x^3 - 2x^2 - 5x + 6 = 0$$

e)
$$x^3 - 2x^2 - 5x + 6 = 0$$
 f) $4x^3 + 4x^2 - x - 1 = 0$ g)

$$6x^4 + x^3 - 7x^2 - x + 1 = 0$$

h)
$$4x^4 - x^3 - 28x^2 + 31x - 6 = 0$$

Sol: a) -1, 3, 5; b) -1, 1, 2; c) -2, 2, 3, -4; d) 0, -1, 1, 2/3; e) 1, -2, 3; f) -1, -1/2, 1/2; g) -1, 1, -1/2, 1/3; h) -3, 1, 2, 5/2