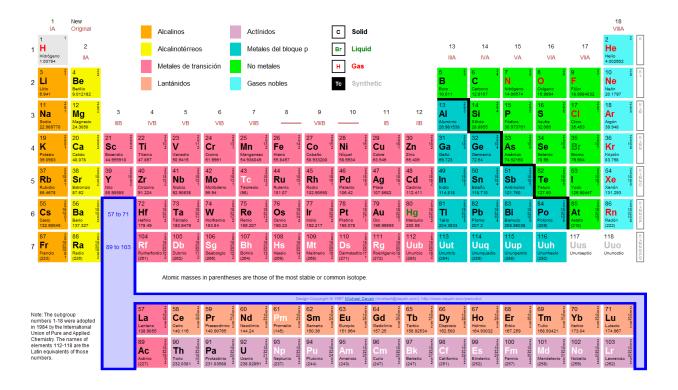


FORMULACIÓN QUÍMICA INORGÁNICA

1.- Introducción

La Química tiene un lenguaje propio para nombrar las sustancias puras, ya sean simples o compuestas. Este lenguaje constituye la **nomenclatura química**. Se completa con una forma abreviada de escribir dichos nombres, que nos informa, además, de la composición de la sustancia y constituye la notación o **formulación química**.


2.- Los elementos Químicos

Se conocen más de 105 elementos diferentes. Cada uno de ellos se representa por un **símbolo** que está formado por la primera letra del nombre escrita con mayúsculas o dos letras (la segunda en minúscula) si hay varios elementos que comienzan con la misma letra. (H, hidrógeno; Co, cobalto). Hay elementos, conocidos desde la antigüedad, cuyo símbolo deriva del nombre griego o latino (Fe, hierro; Na, sodio).

Los elementos se ordenan, teniendo en cuenta sus propiedades químicas, en la **Tabla Periódica**. En esta tabla, las columnas reciben el nombre de **grupos** y las filas el de **períodos**.

Además se clasifican en **metales** y **no metales**. Los metales son elementos que tienen gran tendencia a perder electrones formando iones positivos y los no metales, a ganarlos, dando iones negativos. El carácter metálico aumenta en la Tabla Periódica al desplazarnos hacia la izquierda y hacia abajo.

Tabla Periódica de los Elementos

3.- Valencia

Es la capacidad que tiene un átomo de un elemento para combinarse con los átomos de otros elementos y formar compuestos. La *valencia* es un número, positivo o negativo, que nos indica el número de electrones que gana, pierde o comparte un átomo cuando se combina con otro átomo u otros átomos.

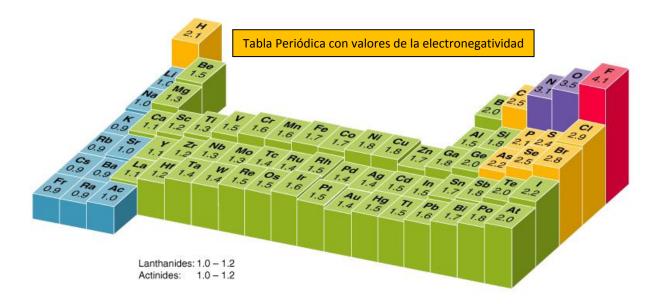
3.1.- Valencias de los elementos más importantes del sistema periódico

3.1.1.- Metales

VALENCIA 1		VALENC	IA 2	VALE	NCIA 3
Litio Sodio Potasio Rubidio Cesio Francio Plata	Li Na K Rb Cs Fr Ag	Berilio Magnesio Calcio Estroncio Zinc Cadmio Bario Radio	Be Mg Ca Sr Zn Cd Ba Ra	Aluminio	Al
VALENCIAS 1	1, 2	VALENCIA	S 1, 3	VALENC	CIAS 2, 3
Cobre Mercurio	Cu Hg	Oro Talio	Au Tl	Níquel Cobalto Hierro	Ni Co Fe
VALENCIAS 2	2, 4	VALENCIAS	5 2, 3, 6	VALENCIAS	6 2, 3, 4, 6, 7
Platino Plomo Estaño	Pt Pb Sn	Cromo	Cr	Manganeso	Mn

3.1.2.-No Metales

VALENCIA -1		VALENCIAS -	VALENCIAS +/- 1, 3, 5, 7		VALENCIA -2	
		Cloro	Cl			
Flúor	F	Bromo	Br	Oxígeno	O	
700		Yodo	I			
VALENCIAS +/-	2, 4, 6	VALENCIAS 2	2, <u>+/- 3</u> , 4, <u>5</u>	VALENCI	AS +/- 3, 5	
Azufre	S			Fósforo	P	
Selenio	Se	Nitrógeno	N	Arsénico	As	
Teluro	Te			Antimonio	Sb	
VALENCIAS +/-2, 4		VALEN	CIA 4	VALE	NCIA 3	
Carbono	С	Silicio	Si	Boro	В	


3.1.3.-Hidrógeno

VALENC	CIA +/-1
Hidrógeno	Н

4.- Normas Generales de formulación

- 1) Se escribe primero el símbolo del elemento que se encuentre más a la izquierda y más debajo de la tabla periódica.
- 2) Se intercambian las valencias como subíndices (sin signo).
- 3) Se simplifican los subíndices que se pueda.
- 4) Se comienza a nombrar por la derecha (parte más electronegativa) y se termina por la izquierda.
- 5) Se elige el tipo de nomenclatura a utilizar.

4.1.-Nomenclaturas

Para nombrar los compuestos químicos inorgánicos se siguen las normas de la IUPAC (unión internacional de química pura y aplicada). Se aceptan tres tipos de nomenclaturas para los compuestos inorgánicos, la sistemática, la nomenclatura de stock y la nomenclatura tradicional.

4.1.1.- Nomenclatura Sistemática

Expresamente recomendada por la IUPAC, se apoya en prefijos numéricos griegos para nombrar compuestos químicos: **Mono** (1), **di** (2), **tri** (3), **tetra** (4), **penta** (5).......

Cl₂O₃ Trióxido de dicloro

I2O Monóxido de diodo

4.1.2.- Nomenclatura Stock

En este tipo de nomenclatura, es especialmente útil para el caso en que un compuesto tenga más de una valencia, ésta se indica al final, en números romanos y entre paréntesis:

Fe(OH)₂ Hidróxido de hierro (II)

Fe(OH)₃ Hidróxido de hierro (III)

4.1.3.- Nomenclatura Tradicional

Esta nomenclatura incluye nombres vulgares y presenta numerosas excepciones. Para poder distinguir con qué valencia actúan los elementos en un compuesto se utilizan una serie de prefijos y sufijos:

Valencia Prefijo			Valencia con la que actúa el	Ejemplos			
ValClicia	valencia Prenjo	Sunjo	elemento	Elemento	Valencias	Fórmula	Nombre Compuesto
1		_ ICO	La que tiene	K	1	K ₂ O	Óxido Potás <mark>ico</mark>
2		_OSO	Menor	Fe	2,3	FeO	Óxido Ferr <mark>oso</mark>
2		_ICO	Mayor	re		Fe ₂ O ₃	Óxido férr <mark>ico</mark>
	HIPO_	_OSO	Menor	S		SO	Anhídrido hiposulfuroso
3		_OSO	Intermedia		2,4,6	SO_2	Anhídrido sulfur <mark>oso</mark>
		_ICO	Mayor			SO_3	Anhídrido sulfúr <mark>ico</mark>
	HIPO_	_OSO	Menor			Cl ₂ O	Anhídrido hipocloroso
4		_OSO	Segunda	Cl	1257	Cl_2O_3	Anhídrido cloroso
4		_ICO	Tercera	Cl	1,3,5,7	Cl_2O_5	Anhídrido clór <mark>ico</mark>
	PER_	_ICO	Mayor			Cl ₂ O ₇	Anhídrido perclór <mark>ico</mark>

5.- Clasificación de los compuestos químicos Inorgánicos

Los compuestos inorgánicos se agrupan en familias que se distinguen, unas de otras, por presentar una estructura similar. Cada familia contiene uno, o un grupo de átomos, que da las propiedades físicas y químicas a sus componentes y de donde toman el nombre.

5.1.- Familias a Estudiar

	Tipos de Compuestos			
Binarios	Ternarios	Otros		
Óxidos (Metálicos (Ácidos) No Metálicos (Básicos) Hidruros Ácidos hidrácidos Sales Binarias Hidróxidos o bases	Ácidos oxácidos Iones { Cationes (Iones +) Aniones (Iones -) Sales Ternarias { Neutras Ácidas	Peróxidos		

6.- Compuestos Binarios

Son los compuestos formados por dos elementos diferentes que se unen mediante enlace iónico o covalente. El elemento más electropositivo, metálico o situado a la izquierda del sistema periódico (SP), se escribe primero. El elemento no metálico, menos electronegativo o más a la derecha del SP, se escribe a continuación.

6.1.- Óxidos

Son compuestos binarios formados por la combi<mark>nación d</mark>e un elemento y oxígeno. Existen dos clases de óxidos; los óxidos básicos y los óxidos ácidos ó anhídr<mark>idos.</mark>

6.1.1.- Óxidos Básicos

Compuestos binarios formados por la combinación de un metal y el oxígeno. Su fórmula general es:

$$M_2O_X$$

Donde M es un metal y x su valencia (el 2 corresponde a la valencia del oxígeno).

LAS VALENCIAS DE LOS ELEMENTOS SE INTERCAMBIAN ENTRE ELLOS Y SE PONEN COMO SUBÍNDICES. (Si la valencia es par se simplifica).

Valer	ncia	Fórmula	N. sistemática	N. stock (la más frecuente)	N. tradicional
1		Na ₂ O	Mon <mark>óxi</mark> do de disodio	Óxido de sodio	Óxido sódico
2		$Ca_2O_2 = CaO$	Monóxido de calcio	Óxido de calcio	Óxido cálcico
		$Fe_2O_2 = FeO$	Monóxido de hierro	Óxido de hierro (II)	Óxido ferroso
3		Fe_2O_3	Trióxido de dihierro	Óxido de hierro (III)	Óxido férrico
4		$Pb_2O_4 = PbO_2$	Dióxido de plomo	Óxido de plomo (IV)	Óxido plúmbico

6.1.2.- Óxidos ácidos o Anhídridos

Son compuestos binarios formados por un no metal y oxígeno. Su fórmula general es:

Donde ${\pmb N}$ es un no metal y la ${\pmb x}$ su valencia (el 2 corresponde a la valencia del oxígeno).

LAS VALENCIAS DE LOS ELEMENTOS SE INTERCAMBIAN ENTRE ELLOS Y SE PONEN COMO SUBÍNDICES.

Valencia	Fórmula	N. sistemática (la más frecuente)	N. stock	N. tradicional
1	F ₂ O	Monóxido de diflúor	Óxido de flúor	Anhídrido hipofluoroso (excepción a la norma general de
1	Cl ₂ O	Monóxido de dicloro	Óxido de cloro (I)	prefijos y sufijos) Anhídrido hipocloroso
2	SO	Monóxido de azufre	Óxido de azufre (II)	Anhídrido hiposulfuroso
3	I_2O_3	Trióxido de diodo	Óxido de Iodo (III)	Anhídrido sulfuroso
4	SeO_2	Dióxido de Selenio	Óxido de selenio (IV)	Anhídrido selenioso
5	Br_2O_5	Pentaóxido de dibromo	Óxido de bromo (V)	Anhídrido brómico
6	S_2O_3	Trióxido de azufre	Óxido de azufre (VI)	Anhídrido sulfúrico
7	I_2O_7	Heptaóxido de diodo	Óxido de Yodo (VII)	Anhídrido periódico

> La nomenclatura tradicional de los óxidos de nitrógeno es un tanto especial

Valencia	Fórmula	N. sistemática	N. stock	N. tradicional
2	NO	Monóxido de Nitrógeno	Óxido de Nitrógeno (II)	Óxido nitroso
4	NO_2	Dióxido de Nitrógeno	Óxido de Nitrógeno (IV)	Óxido nítrico
3	N_2O_3	Trióxido de dinitrógeno	Óxido de Nitrógeno (III)	Anhídrido nitroso
5	N_2O_5	Pentóxido de dinitrogeno	Óxido de Nitrógeno (V)	Anhídrido nítrico

EJERCICIO 1. COMPLETA LA TABLA.

Fórmula	N. sistemática	N. stock	N. tradicional
F ₂ O			
			Óxido ferroso
As_2O_5			
CaO			
Fe ₂ O ₃			
PbO ₂			
Al_2O_3			
SnO			
N_2O_5			
Au_20			
_	Dióxido de Teluro		
			Óxido aúrico
			Óxido cuproso
		Óxido de selenio (II)	
			Óxido crómico
	Trióxido de dihierro		
		Óxido de fósforo (V)	
I_2O_7			
			Anhídrido hiposulfuroso

6.2.- Hidruros

Son compuestos binarios formados por un metal e Hidrógeno. Su fórmula general es:

 MH_{X}

Donde ${\pmb M}$ es un metal y la ${\pmb x}$ su valencia.

EL HIDRÓGENO SIEMPRE TIENE VALENCIA 1.

Valencia	Fórmula	N. sistemática	N. stock (la más frecuente)	N. tradicional
1	NaH	Monohidruro de sodio	Hidruro de sodio	Hidruro sódico
2	FeH_2	Dihidruro de hierro	Hidruro de hierro (II)	Hidruro ferroso
3	FeH_3	Trihidruro de hierro	Hidruro de hierro (III)	Hidruro férrico
4	SnH₄	Tetrahidruro de estaño	Hidruro estaño (IV)	Hidruro estánnico

6.2.1.- Hidruros de No Metales

Hay no metales como el nitrógeno, fósforo, arsénico antimonio, carbono, silicio y boro que forman compuestos con el hidrógeno y que reciben nombres especiales.

Nitrógeno, fósforo, arsénico, antimonio y boro actúan con valencia 3 mientras que el carbono y el silicio lo hacen con valencia 4.

Valencia	Fórmula	N. tradicional (la más usada)	N. sistemática
3	NH_3	Amoniaco	Trihidruro de nitrógeno
3	PH_3	Fosfina	Trihidruro de fósforo
3	AsH_3	Arsina	Trihidruro de arsénico
3	BH_3	Borano	Trihidruro de boro
3	SbH ₃	Estibina	Trihidruro de antimonio
- 6			
4	CH ₄	Metano	Tetrahidruro de carbono
4	SiH ₄	Silano	Tetrahidruro de boro

EJERCICIO 2. COMPLETA LA TABLA.

Fórmula	N. sistemática	N. stock	N. tradicional
AuH_3			
LiH			
		Hidruro de plomo (II)	
		Hidruro de plata	
			Fosfina
			Metano
	Trihidruro de arsénico		
N_2O_3			
NO			
	Trióxido de azufre		
			Óxido ferroso
			Hidruro niquélico
PbO ₂			
		Óxido de bromo (VII)	
		Hidruro de calcio	
			Estibina
		Hidruro de sodio	
	Heptaóxido de dicloro		

6.3.- Ácidos Hidrácidos

Son compuestos binarios formados por un no metal e hidrógeno. Los no metales que forman estos ácidos son los siguientes:

• Flúor, cloro, bromo, yodo (todos ellos se actúan con valencia 1)

FORMULACIÓN DE QUÍMICA INORGÁNICA

• Azufre, selenio, teluro (actúan con valencia 2).

Su fórmula general es: H_xN

Donde N es el no metal y la x su valencia. (El hidrógeno actúa con valencia 1).

Valencia	Fórmula	N. tradicional (cuando está en disolución)	N. tradicional (cuando está en estado puro)
1	HF	Ácido fluorhídrico	Fluoruro de hidrógeno
1	HCl	Ácido clorhídrico	Cloruro de hidrógeno
1	HBr	Ácido Bromídrico	Bromuro de hidrógeno
1	HI	Ácido Iodídrico	Ioduro de hidrógeno
2	H_2S	Ácido sulfídrico	Sulfuro de hidrógeno
2	H ₂ Se	Ácido selenídrico	Seleniuro de hidrógeno
2	H_2 Te	Ácido telurídrico	Telururo de hidrógeno

6.4.- Sales derivadas de los Ácidos Hidrácidos

Se obtienen sustituyendo los hidrógenos del ácido hidrácido correspondiente por un metal. Se nombran con el nombre del no metal terminado en **–uro** seguido del nombre del metal. Si el metal tiene más de una valencia se indica al final, en números romanos y entre paréntesis.

El número de hidrógenos que se le quitan al ácido se le pone como subíndice al metal.

Ácido Hidrácido	Fórmula	N. stock (la más común)	N. tradicional
HF	CaF ₂	Fluoruro <mark>de calcio</mark>	Fluoruro cálcico
HCl	FeCl ₂	Cloruro de hierro (III)	Cloruro férrico
HBr	CdBr ₂	Bromuro d <mark>e cadmi</mark> o	Bromuro de cadmio
HI	CrI ₂	Yoduro de cromo (II)	Yoduro cromoso
H_2S	$Pt_2S_4 = PtS_2$	Sulfuro de p <mark>latino</mark> (IV)	Sulfuro de platino
H ₂ Se	Al ₂ Se ₃	Seleniuro de aluminio	Seleniuro alumínico
H ₂ Te	Au_2Te_3	Telururo de oro (III)	Telururo aúrico

EJERCICIO 3. COMPLETA LA TABLA.

Fórmula	N. stock	N. tradicional
	Cloruro de estaño (IV)	
		Cloruro sódico
	Bromuro de cobalto (III)	
PbS ₂		
		Seleniuro cuproso
	Telururo de mercurio (I)	

6.5.- Hidróxidos

Son compuestos formados por un metal y el grupo hidroxilo (OH⁻). Su fórmula general es: **M(OH)**_x

Donde M es un metal y la X la valencia del metal. **EL GRUPO (OH) SIEMPRE TIENE VALENCIA 1.**

Valencia	Fórmula	N. sistemática	N. Stock (la más frecuente)	N. tradicional
1	NaOH	Hidróxido de sodio	Hidróxido de sodio	Hidróxido sódico.
2	Ca(OH) ₂	Dihidróxido de calcio	Hidróxido de calcio	Hidróxido cálcico
3	Al(OH) ₃	Trihidróxido de aluminio	Hidróxido de aluminio	Hidróxido alumínico
4	Pb(OH) ₄	Tetrahidróxido de plomo	Hidróxido de plomo (IV)	Hidróxido plúmbico

EJERCICIO 4. COMPLETA LA TABLA.

Fórmula	N. sistemática	N. stock	N. tradicional
Fe(OH) ₃			
Au(OH)			
Cr(OH) ₂			
		Hidróxido de talio (I)	
		Hidróxido de mercurio (II)	
Ag(OH)			
		Hidróxido de Berilio	
			Hidróxido ferroso
	Trihidróxido de Oro		

7.- Compuestos Ternarios

7.1.- Ácidos Oxácidos

Son compuestos ternarios formados por un no metal, oxígeno e hidrógeno. Se obtienen a partir del óxido ácido o anhídrido correspondiente sumándole una molécula de agua (H_2O) .

Su fórmula general es:

$$H_2O + N_2O_x = H_aN_bO_c$$

Donde H es el hidrógeno, N el no metal y O el oxígeno.

Los oxácidos se nombran de la siguiente forma:

• **Según la nomenclatura tradicional**, se utiliza la palabra ácido seguida de la raíz del elemento central –el no metal- con prefijos y sufijos indicando la valencia del no metal.

Los prefijos y sufijos utilizados son los que vimos en la página uno.

Por ejemplo: el compuesto HClO₃ sería el ácido clórico

Valencia	Fórmula	N. tradicional
1	$F_2O + H_2O = H_2F_2O_2 = $ HFO	Ácido hipofluoroso
2	$SO + H_2O = \mathbf{H_2SO_2}$	Ácido hiposulfuroso
3	$Cl_2O_3 + H_2O = H_2Cl_2O_4 = \mathbf{HClO_2}$	Ácido cloroso
4	$S_2O + H_2O = \mathbf{H_2SO_3}$	Ácido sulfuroso
5	$Cl_2O_5 + H_2O = H_2Cl_2O_6 = \mathbf{HClO_3}$	Ácido clórico
6	$SO_3 + H_2O = \mathbf{H_2SO_4}$	Ácido sulfúrico
7	$Cl_2O_7 + H_2O = H_2Cl_2O_8 = HClO_4$	Ácido perclórico

^{*} El nitrógeno sólo forma ácidos oxácidos con lasvalencias 3 y 5.

Valencia	Fórmula	N. tradicional
3		Ácido nitroso
5		Ácido nítrico

El fósforo, arsénico y antimonio forman ácidos especiales:

✓ Si a los óxidos correspondientes se les suma una molécula de agua tenemos los ácidos **META:**

Valencia	Fórmula	N. tradicional
3	$P_2O_3 + H_2O = \mathbf{HPO_2}$	Ácido metafosforoso
5	$P_2O_5 + H_2O = \mathbf{HPO_3}$	Ácido metafosfórico

✓ Si se les unen dos moléculas de agua se obtienen los ácidos **PIRO**:

Valencia	Fórmula	N. tradicional
3	$P_2O_3 + 2H_2O = \mathbf{H_4P_2O_5}$	Ácido pirofosforoso
5	$P_2O_5 + 2H_2O = \mathbf{H_4P_2O_7}$	Ácido pirofosfórico

✓ El fósforo, arsénico y antimonio forman los ácidos **ORTO** cuando se les suman 3 moléculas de agua a los óxidos correspondientes.

Valencia	Fórmula	N. tradicional
3	$P_2O_3 + 3H_2O = H_6P_2O_6 = H_3PO_3$	Ácido ortofosforoso (Ácido Fosforoso)
5	$P_2O_5 + 3H_2O = H_6P_2O_8 = \mathbf{H_3PO_4}$	Ácido ortofosfórico (Ácido Fosfórico)

^{*} Hay algunos metales que también forman ácidos, como el cromo y el manganeso:

Valencia	Fórmula	N. tradicional
6	$CrO_3 + H_2O = \mathbf{H_2CrO_4}$	Ácido crómico
6	* $Cr_{2}O_{6} + H_{2}O = H_{2}Cr_{2}O_{7}$	Ácido dicrómico

Valencia	Fórmula	N. tradicional
6	$MnO_3 + H_2O = H_2MnO_4$	Ácido mangánico
7	$Mn_2O_7 + H_2O = H_2Mn2O_8 = HMnO_4$	Ácido permangánico

• En la nomenclatura sistemática, se utilizan los prefijos: mono-, di-, tri-, tetra-, etc., para indicar el número de átomos de oxígeno, a continuación se intercala el término –oxo-, luego la raíz del nombre latino del elemento X seguido de la terminación –ato; después, con números romanos y entre paréntesis, el estado de oxidación del elemento X y para finalizar se añade el término de hidrógeno.

Por ejemplo: el HClO₃ sería el trioxoclorato (V) de hidrógeno

Valencia	Fórmula	N. Sistemática
1	$F_2O + H_2O = H_2F_2O_2 = $ HFO	Monoxofosfato (I) de Hidrógeno
2	$SO + H_2O = \mathbf{H_2SO_2}$	Dioxosulfato (II) de Hidrógeno
3	$Cl_2O_3 + H_2O = H_2Cl_2O_4 = \mathbf{HClO_2}$	Dioxoclorato (III) de Hidrógeno
4	$S_2O + H_2O = \mathbf{H_2SO_3}$	Trioxosulfato (IV) de Hidrógeno
5	$Cl_2O_5 + H_2O = H_2Cl_2O_6 = \mathbf{HClO_3}$	Trioxoclorato (V) de Hidrógeno
6	$SO_3 + H_2O = \mathbf{H_2SO_4}$	Tetraoxosulfato (VI) de Hidrógeno
7	$Cl_2O_7 + H_2O = H_2Cl_2O_8 = \mathbf{HClO_4}$	Tetraoxoclorato (VII) de Hidrógeno

En la nomenclatura Stock, se utiliza la palabra ácido seguida de los prefijos: mono-, di-, tri-, tetra-, etc., que indican el número de átomos de oxígeno, terminados en -oxo. Seguidamente se escribe el nombre del elemento central terminado en -ico, indicando su número de oxidación en números romanos y entre paréntesis.

Por ejemplo: el HClO₃ sería el ácido trioxoclórico (V)

Valencia	Fórmula	N. Stock
1	$F_2O + H_2O = H_2F_2O_2 = $ HFO	Ácido monoxofluórico (I)
2	$SO + H_2O = \mathbf{H_2SO_2}$	Ácido dioxosulfúrico (II)
3	$Cl_2O_3 + H_2O = H_2Cl_2O_4 = \mathbf{HClO_2}$	Ácido dioxoclórico (III)
4	$S_2O + H_2O = \mathbf{H_2SO_3}$	Ácido trioxosulfúrico (IV)
5	$Cl_2O_5 + H_2O = H_2Cl_2O_6 = \mathbf{HClO_3}$	Ácido trioxoclórico (V)
6	$SO_3 + H_2O = \mathbf{H_2SO_4}$	Ácido tetraoxosulfúrico (VI)
7	$Cl_2O_7 + H_2O = H_2Cl_2O_8 = \mathbf{HClO_4}$	Ácido tetraoxoclórico (VII)

FORMULACIÓN DE QUÍMICA INORGÁNICA

Dado el uso tan extenso y generalizado que tiene la nomenclatura tradicional es preciso aprender de memoria el nombre de los siguientes ácidos:

Ácido	Tradicional	Sistemática	Stock
HClO ₄	Ácido perclórico	Tetraoxoclorato (VII) de hidrógeno	Ácido tetraoxoclórico (VII)
HClO ₃	Ácido clórico	Trioxoclorato (V) de hidrógeno	Ácido trioxoclórico (V)
HClO ₂	Ácido cloroso	Dioxoclorato (III) de hidrógeno	Ácido dioxoclórico (III)
HClO	Ácido hipocloroso	Oxoclorato (I) de hidrógeno	Ácido monoxoclórico (I)
H ₂ SO ₄	Ácido sulfúrico	Tetraoxosulfato (VI) de hidrógeno	Ácido tetraoxosulfúrico (VI)
H_2SO_3	Ácido sulfuroso	Trioxosulfato (IV) de hidrógeno	Ácido trioxosulfúrico (IV)
H_2SO_2	Ácido hiposulfuroso	Dioxosulfato (II) de hidrógeno	Ácido dioxosulfúrico (II)
HNO_3	Ácido nítrico	Trioxonitrato (V) de hidrógeno	Ácido trioxonítrico (V)
HNO_2	Ácido nitroso	Dioxonitrato (III) de hidrógeno	Ácido dioxonítrico (III)
H ₃ PO ₄	Ácido fosfórico	Tetraoxofosfato (V) de hidrógeno	Ácido tetraoxofosfórico (V)
H_3PO_3	Ácido fosforoso	Trioxofosfato (III) de hidrógeno	Ácido trioxofosfórico (III)
H ₂ CO ₃	Ácido carbónico	Trioxocarbonato (IV) de hidrógeno	Ácido trioxocarbónico (IV)

EJERCICIO 5. COMPLETA LA TABLA.

Fórmula	N. sistemática	N. stock	N. tradicional
		Hidruro de calcio	
		Hidruro de estroncio	
		Hidruro de aluminio	
		Hidruro de cobalto (II)	
			Estibina
			Ácido clorhídrico
			Ácido sulfhídrico
			Ácido Iodhídrico
			Ácido hipocloroso
			Ácido Iodoso
			Ácido periódico
			Ácido hipofluoroso
			Ácido selenioso
			Ácido telúrico
N_2O_3			
MgO			
Cl ₂ O			
			Borano
			Ácido permangánico
			Ácido metafosforoso
			Ácido metaantimónico
			Ácido pirofosfórico
			Ácido piroantimonioso
			Ácido ortofosforoso
			Ácido fosfórico

7.2.- Iones

Los cationes y los aniones, en general iones, son sustancias químicas con carga neta positiva o negativa, respectivamente.

Estos compuestos pueden obtenerse de diferentes formas y su formulación resulta útil antes de abordar la formulación de las sales oxoácidas.

7.2.1.- Cationes

Los cationes son especies con carga neta positiva. Los más sencillos son aquellos que se forman por pérdida de electrones en átomos de elementos metálicos (cationes monoatómicos):

Átomo	electrones perdidos	Catión	Carga del catión
Н	1	H ⁺	+1
Na	1	Na ⁺	+1
Ca	2	Ca ²⁺	+2
Fe	3	Fe ³⁺	+3

Para nombrar estos cationes se sigue las reglas observadas en las distintas nomenclaturas, anteponiendo la palabra catión o ión al nombre:

Catión	Nomenclatura Stock	Nomenclatura Sistemática	Nomenclatura tradicional
H ⁺	ión hidrógeno	ión hidrógeno	ión hidrógeno
Cu ⁺	ión cobre (I)	Ión monocobre	Ión cuproso
Ni ⁺²	ión niquel (II)	ión diniquel	ión niqueloso
Co ⁺³	ión cobalto (III)	ión tricobalto	ión cobáltico
Fe ⁺³	ión hierro (III)	Ión trihierro	Ión férrico

Además de estos cationes existen otros, poliatómicos, entre los que se pueden destacar como más interesantes:

Catión	Nomenclatura Sistemática	Nomenclatura tradicional
NO ⁺	catión monooxonitróge <mark>no (III)</mark>	catión nitrosilo
VO ⁺²	catión monooxovanadi <mark>o (IV)</mark>	catión vanadilo
UO_2^{+2}	catión dioxouranio (V <mark>I)</mark>	catión uranilo

Por último hay otras especies a las cuales se nombran anadiendo la terminación -onio al nombre del compuesto de procedencia:

NH₄⁺ ión amonio → procede del amo<mark>níac</mark>o PH₄⁺ ión fosfonio → procede de la fosfina

 H_3S^+ ión sulfonio ightharpoonup procede del ácido sulfhídrico

H₃O⁺ ión hidronio → procede del agua

7.2.2.- Aniones

Los aniones son especies químicas con carga neta negativa. Los más sencillos son los monoatómicos formados a partir de elementos no metálicos que ganan electrones:

Átomo	electrones ganados	Anión	Carga del anión
H		H ⁻	
Cl	1	Cl ⁻	-1
I	1	I-	-1
S	2	S ²⁻	-2

Habitualmente estos aniones derivan de hidruros de no metales y de los ácidos hidrácidos que han perdido los hidrógenos de su molécula. Por ello, se nombran como las sales hidrácidas, es decir, mediante el nombre del elemento terminado en -uro:

Anión	Nombre
H ⁻	ión hidruro
Cl-	ión cloruro
I-	ión ioduro
S ²⁻	ión sulfuro
Br ⁻	ión bromuro

FORMULACIÓN DE QUÍMICA INORGÁNICA

Al igual que en los cationes, también existen aniones poliatómicos. En general, derivan de ácidos oxoácidos que han perdido sus hidrógenos. Para nombrarlas, se parte del nombre del ácido de procedencia anteponiendo la palabra ión o anión y cambiando la terminación: —ico por —ato y —oso por —ito, en la nomenclatura tradicional e —ico por —ato en la funcional, coincidiendo con la nomenclatura sistemática.

Anión	Nomenclatura sistemática	Nomenclatura tradicional
NO_2^-	Anión Dioxonitrato (II)	Anión nitrito
BrO ₃	Anión Trioxobromato (V)	Anión brómato
CO ₃ ²⁻	Ión Trioxocarbonato (IV)	Ión carbónato
CrO ₄ ²⁻	Anión Tetraoxocromato (VI)	Anión crómato
IO-	Ión Monoxoiodato (I)	Ión hipoiodito
SO ₄ ²⁻	Anión tetraoxosulfato (VI)	Ión sulfato
$\mathrm{MnO_4}^-$	Ión tetraoxomanganato (II)	Ión permanganato

Dos aniones importantes son el grupo OH^- cuyo nombre admitido es hidróxido y el $O_2^{\ 2^-}$ denominado peróxido.

EJERCICIO 6. COMPLETA LA TABLA.

Fórmula	N. sistemática	N. stock	N. tradicional
		Hidróxido de berilio	Ácido crómico
		Hidróxido de níquel (III)	Ácido dicrómico
		Hidróxido de plomo (II)	Ácido carbónico
HPO_2			
H_2SO_4			
HClO ₄			
HBrO ₃			
		Ácido trioxonítrico (III)	
HBr			
PH ₃			
SbH ₃			
$HBrO_2$			
H ₂ SeO ₂			
HI			
H ₂ SeO ₃			
	Dioxonitrato(III) de hidrógeno		
			Ácido clorhídrico
	Tetraoxofosfato (V) de hidrógeno		Ión amonio
			Ácido piroarsenioso
		Ácido tetraoxosulfúrico (VI)	
	monóxido de carbono		
		óxido de carbono (II)	
			Ión permanganato
IO-			
	Ión monocobre		

7.3.- Sales de Ácidos Oxácidos

Son compuestos ternarios formados por un metal, un no metal y el oxígeno que se obtienen a partir de los ácidos oxácidos sustituyendo los hidrógenos de éstos por un metal.

Vamos a estudiar dos tipos de sales de ácidos oxácidos, las sales neutras y las sales ácidas.

7.3.1.- Sales Neutras

Se obtienen sustituyendo **todos** los hidrógenos de un ácido oxácido por un metal.

La valencia del metal se le pone como subíndice al resto del ácido sin los hidrógenos. El número de hidrógenos que se le quiten al ácido se le ponen como subíndice al metal.

Se nombran sustituyendo los sufijos que utilizábamos en el ácido (-oso e -ico) por los sufijos -ito y -ato respectivamente.

Prefijos y sufijos utilizados en los ácidos	Prefijos y sufijos utilizados en las sales		
HIPOOSO	HIPOITO		
-OSO	-ITO		
-ICO	-ATO		
PERICO	PERATO		
Puede ayudarte a recordar la equivalencia de sufijos la siguiente frase:			
Cuando el OSO toca el pITO, perICO toca el silbATO.			

Ácido de partida	Nombre del ácido	Sal	Nombre de la sal		
HClO	Ácido hipocloroso	Ca(ClO) ₂	Hipoclorito de calcio		
HClO ₂	Ácido cloroso	Ca(ClO2) ₂	Clorito de calcio		
HClO ₃	Ácido clórico	$Sn(ClO_3)_4$	Clorato de estaño (IV)		
HClO ₄	Ácido perclórico	Li(ClO ₄)	Perclorato de litio		
H ₂ SO ₂	Ácido hiposulfuroso	$Ca_2(SO_2)_2 = Ca(SO_2)$	Hiposulfito de calcio		
H ₂ SO ₃	Ácido sulfuroso	$Pb_2(SO_3)_4 = Pb(SO_3)_2$	Sulfito de plomo (IV)		
H ₂ SO ₄	Ácido Sulfúrico	$Al_2(SO_4)_3$	Sulfato de aluminio		
$H_4P_2O_7$	Ácido pirofosfórico	$Fe_4(P_2O_7)_3$	Pirofosfato de hierro (III)		
H_3AsO_3	Ácido ortoarsenioso	K ₃ (AsO3)	Ortoarsenito de potasio		

EJERCICIO 7. COMPLETA LA TABLA.

Fórmula	Nomenclaturas		
	Clorato de potasio		
	Hipobromito de calcio		
	Bromato de estaño (IV)		
	Perclorato de mercurio (II)		
	Sulfato de calcio		
	Hiposelenito de cobre (II)		
	Telurito de cobre (I)		
	Metarseniato de hierro (III)		
	Metantimonito de estaño (IV)		
	Pirofosfato de calcio Piroarsenito de sodio Ortoantimoniato de níquel (III)		
	Carbonato de sodio		
	Silicato de potasio		
	di-trioxonitrato (V) de magnesio		

7.3.2.- Sales Ácidas

Son compuestos que se obtienen sustituyendo **PARTE DE LOS HIDRÓGENOS** de un ácido oxácido por un metal.

El número de hidrógenos que se le quitan al ácido se le pone como subíndice al metal y la valencia del metal se le pone como subíndice al resto del ácido.

Se nombran con la palabra hidrógeno precedida de los prefijos di- (H_2) , tri- (H_3) seguido del nombre de la sal correspondiente. O si se sustituyen la mitad de los hidrógenos se nombran con el sufijo Bi-

Forman sales ácidos los no metales siguientes: S, Se, Te, y los ácidos piro y orto del P, As y Sb.

Ácido de partida	Nombre del ácido	Sal	Nombre de la sal
H_2SO_2	Ácido hiposulfuroso	$Ca(HSO_2)_2$	Hidrógeno hiposulfito de calcio
H_2SO_3	Ácido sulfuroso	Pb(HSO ₃) ₄	Hidrógeno sulfito de plomo (IV)
H_2SO_4	Ácido sulfúrico	$Cr(HSO_4)_3$	Hidrógeno sulfato de cromo (III)
$H_4As_2O_5$	Ácido piroarsenioso	$Sr(H_3As_2O_5)_2$	Trihidrógeno piroarsenito de estroncio
$H_4Sb_2O_5$	Ácido piroantimonioso	$Mg(H_2Sb_2O_5)$	Dihidrógeno piroantimonito de Magnesio
$H_4P_2O_5$	Ácido pirofosforoso	$Ca(H_3P_2O_5)_2$	Trihidrógeno pirofosfito de calcio
H_3PO_3	Ácido Ostofosforoso	$K (H_2PO_3)$	Dihidrógeno ortofosfito de potasio
H_3PO_3	Ácido Ostofosforoso	$Mg(HPO_3)$	Hidrógeno ortofosfito de magnesio
H_2CO_3	Ácido Carbónico	Na(HCO ₃)	Bicarbonato sódico
H ₂ SO ₄	Ácido sulfúrico	Au(HSO ₄)	Bisulfato auroso

12.- Otros Compuestos

12.1.- Peróxidos

Se caracterizan por llevar el grupo PEROXO (-O-O-) también representado O_2^2 -.

Los podemos considerar como óxidos con más oxígeno del que corresponde por la valencia de este elemento.

Valencia	Fórmula	Nomenclatura
1	H_2O_2	Peróxido de hidrógeno = Agua oxigenada
1	Na ₂ O ₂	Peróxido de sodio
2	$Ca_2O_4 = CaO_2$	Peróxido de calcio
2	$Ba_2O_4 = BaO_2$	Peróxido de bario
1	K_2O_2	Peróxido de potasio

13.- Ejercicios

Formula o nombra las siguientes sustancias en las tres nomenclaturas

1.	Óxido de bario	28.	Peróxido de litio	55.	Hidrógeno sulfato de litio	82.	BaS
2.	Óxido de sodio	29.	Sulfuro de hierro (II)	56.	Peróxido de plata	83.	AICI ₃
3.	Anhídrido sulfuroso	30.	Ácido nítrico	57.	Hidrógeno ortoarseniato de	84.	Al_2S_3
4.	Óxido de plata	31.	Ácido carbónico		potasio	85.	Li ₂ O
5.	Óxido de aluminio	32.	Ácido perclórico	59.	BaO	86.	FeS
6.	Óxido de níquel (III)	33.	Ácido fosfórico	60.	Na ₂ O	87.	HNO ₃
7.	Óxido de cloro (VII)	34.	Ácido metafosfórico	61.	SO ₂	88.	H ₂ CO ₃
8.	Óxido nitroso	35.	Ácido sulfhídrico	62.	CaO	89.	HCIO ₄
9.	Anhídrido nitroso	36.	Ácido sulfúrico	63.	Ag ₂ O	90.	H ₃ PO ₄
10.	Hidruro de litio	37.	Ácido <mark>h</mark> ipoiod <mark>o</mark> so	64.	NiO	91.	$H_4P_2O_5$
11.	Cloruro de cobalto (III)	38.	Hidrur <mark>o de</mark> magnesio	65.	Cl ₂ O ₇	92.	HIO
12.	Hidruro de plata	39.	Ácido silícico	66.	P_2O_5	93.	H ₂ S
13.	Ácido bromhídrico	40.	Hidróxido de calcio	67.	LiH	94.	MgH_2
14.	Ácido sulfhídrico	41.	Hidróxido de hierro (III)	68.	CaO	95.	H_2SiO_3
15.	Amoniaco	42.	Ácido nitroso	69.	AgH	96.	Ca(OH) ₂
16.	Ácido clorhídrico	43.	Hidróxido de aluminio	70.	HBr	97.	Fe(OH)₃
17.	Peróxido de bario	44.	Bromuro de cobalto (II)	71.	H₂S	98.	HNO ₂
18.	Hidruro de calcio	45.	Hidróxido de potasio	72.	NH ₃	99.	Al(OH)₃
19.	Peróxido de sodio	46.	Sulfato de calcio	73.	HCI	100.	кон
20.	Óxido de estroncio	47.	Cloruro de cobalto (III)	74.	BaO	101.	CaSO ₄
21.	Ácido clorhídrico	48.	Nitrito de litio	75.	CaH ₂	102.	$Al_2(SiO_3)_3$
22.	Cloruro de sodio	49.	Carbonato sódico	76.	Na_2O_2	103.	CoCl ₂
23.	Fluoruro de calcio	50.	Cloruro potásico	77.	PH ₃	104.	LiNO ₂
24.	Yoduro de plomo (II)	51.	Sulfuro de zinc	78.	Cs ₂ O	105.	Na_2CO_3
25.	Bromuro potásico	52.	Hipoiodito potásico	79.	PbI ₂	106.	$Ca_3(PO_4)_2$
26.	Sulfuro de bario	53.	Fosfato cálcico	80.	KBr	107.	KHCO ₃
27.	tricloruro de arsénico	54.	Bicarbonato potásico	81.	AsH ₃	108.	ZnCl ₂

