

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005

MATEMÁTICAS II TEMA 4: FUNCIONES

- Junio, Ejercicio 1, Opción A
- Junio, Ejercicio 1, Opción B
- Reserva 1, Ejercicio 1, Opción A
- Reserva 1, Ejercicio 1, Opción B
- Reserva 2, Ejercicio 1, Opción A
- Reserva 2, Ejercicio 1, Opción B
- Reserva 3, Ejercicio 1, Opción B
- Reserva 3, Ejercicio 2, Opción A
- Reserva 4, Ejercicio 1, Opción A
- Reserva 4, Ejercicio 1, Opción B
- Septiembre, Ejercicio 2, Opción A
- Septiembre, Ejercicio 1, Opción B

De la función $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = ax^3 + bx^2 + cx + d$ se sabe que tiene un máximo en x = -1, y que su gráfica corta al eje OX en el punto de abscisa x = -2 y tiene un punto de inflexión en el punto de abscisa x = 0. Calcula a, b, c y d sabiendo, además, que la recta tangente a la gráfica de f en el punto de abscisa x = 2 tiene pendiente 9. MATEMÁTICAS II. 2005. JUNIO. EJERCICIO 1. OPCIÓN A.

RESOLUCIÓN

Al ser polinómica la función $f(x) = ax^3 + bx^2 + cx + d$ su dominio es \mathbb{R} , por lo tanto, es continua y derivable en \mathbb{R} . Calculamos su derivada primera y segunda:

$$f'(x) = 3ax^2 + 2bx + c$$
; $f''(x) = 6ax + 2b$

Máximo en $x = -1 \Rightarrow f'(-1) = 0 \Rightarrow 3a - 2b + c = 0$

Corta al eje OX en $x = -2 \Rightarrow f(-2) = 0 \Rightarrow -8a + 4b - 2c + d = 0$

Punto de inflexión en $x = 0 \Rightarrow f''(0) = 0 \Rightarrow 2b = 0$

La tangente en x = 2 tiene de pendiente $9 \Rightarrow f'(2) = 9 \Rightarrow 12a + 4b + c = 9$

Resolviendo el sistema formado por las 4 ecuaciones que hemos obtenido:

$$3a-2b+c=0
-8a+4b-2c+d=0
2b=0
12a+4b+c=9$$

Resulta: a = 1; b = 0; c = -3; d = 2

Sea f la función definida para $x \neq 0$ por $f(x) = \frac{x^2 + 1}{x}$.

- a) Estudia y determina las asíntotas de la gráfica de f.
- b) Determina los intervalos de crecimiento y de decrecimiento de f y calcula sus extremos relativos o locales (puntos en los que se obtiene y los valores que alcanza la función).
- c) Esboza la gráfica de f.

MATEMÁTICAS II. 2005. JUNIO. EJERCICIO 1. OPCIÓN B.

RESOLUCIÓN

a) El dominio de la función f(x) es R $-\{0\}$

Asíntotas Verticales: La recta x = 0 es una asíntota vertical ya que $\lim_{x\to 0} f(x) = \pm \infty$

Asíntotas Horizontales: No tiene ya que $\lim_{x \to +\infty} f(x) = \infty$

Asíntota Oblicua: La ecuación es y = mx + n:

$$m = \lim_{x \to \infty} \frac{\frac{x^2 + 1}{x}}{x} = \lim_{x \to \infty} \frac{x^2 + 1}{x^2} = 1; \quad n = \lim_{x \to \infty} \left[\frac{x^2 + 1}{x} - 1x \right] = \lim_{x \to \infty} \frac{x^2 + 1 - x^2}{x} = \lim_{x \to \infty} \frac{1}{x} = 0$$

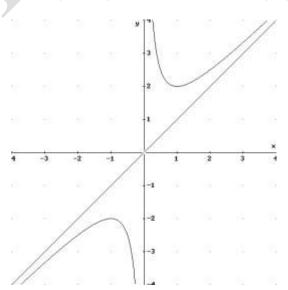
Luego es: y = x

b) Calculamos la primera derivada y la igualamos a cero: $y' = \frac{x^2 - 1}{x^2}$; $y' = 0 \Rightarrow x = \pm 1$

	$(-\infty,-1)$	(-1,0)	(0,1)	(1,∞)
Signo y '	+	_	ı	+
Función	С	D	D	С

Máximo(-1,-2) No existe mínimo(1,2)

c)



Sea f la función definida para $x \neq 1$ por $f(x) = \frac{e^x}{x-1}$.

- a) Halla las asíntotas de la gráfica de f.
- b) Determina los intervalos de crecimiento y de decrecimiento de f.
- c) Determina los intervalos de concavidad y de convexidad de f.
- d) Esboza la gráfica de f.

MATEMÁTICAS II. 2005. RESERVA 1. EJERCICIO 1. OPCIÓN A.

RESOLUCIÓN

a) El dominio de la función f(x) es $\mathbb{R} - \{1\}$

Asíntotas Verticales: La recta x = 1 es una asíntota vertical ya que $\lim_{x \to 1} f(x) = \pm \infty$

Asíntotas Horizontales: $\lim_{x \to +\infty} f(x) = \frac{e^{\infty}}{\infty} = \frac{\infty}{\infty} = \lim_{x \to +\infty} \frac{e^{x}}{1} = \infty \Rightarrow \text{No tiene}$

$$\lim_{x \to -\infty} f(x) = \frac{e^{-\infty}}{\infty} = \frac{1}{\infty} = 0 \Rightarrow y = 0$$

Luego, y = 0 es una asíntota horizontal cuando $x \to -\infty$.

Al tener asíntota horizontal, no tiene asíntota oblicua.

b) Calculamos la primera derivada y la igualamos a cero: $y' = \frac{e^x(x-2)}{(x-1)^2} = 0 \Rightarrow x = 2$

	(-∞,1)	(1,2)	(2,∞)
Signo y '	1	(-	+
Función	D	D	C

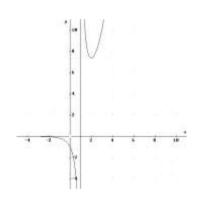
No existe mínimo $(2, e^2)$

c) Calculamos la segunda derivada y la igualamos a cero: $y'' = \frac{e^x(x^2 - 4x + 5)}{(x - 1)^3} = 0 \Rightarrow No$

	$(-\infty,1)$	(1,∞)
Signo y '	_	+
Función	Cn	Cx
	1	

No existe

d)



Determina los puntos de la parábola de ecuación $y = 5 - x^2$ que están más próximos al origen de coordenadas. Calcula la distancia entre los puntos obtenidos y el origen de coordenadas. MATEMÁTICAS II. 2005. RESERVA 1. EJERCICIO 1. OPCIÓN B.

RESOLUCIÓN

Cualquier punto P de la parábola tendrá de coordenadas $P = (a, 5 - a^2)$, y el origen de coordenadas es el punto O = (0,0). Queremos que sea mínima la distancia entre estos dos puntos, luego tiene que ser mínimo el módulo del vector que une esos dos puntos.

$$\overrightarrow{OP} = (a, 5 - a^2)$$

$$D_{\min} = \sqrt{a^2 + (5 - a^2)^2} = \sqrt{a^4 - 9a^2 + 25}$$

$$D'_{\min} = \frac{4a^3 - 18a}{2\sqrt{a^4 - 9a^2 + 25}} = 0 \Rightarrow x = 0; x = \frac{3}{\sqrt{2}}; x = -\frac{3}{\sqrt{2}}$$

Calculamos la segunda derivada para ver que valor de los obtenidos corresponde al mínimo.

$$D" = \frac{2a^6 - 27a^4 + 150a^2 - 225}{\sqrt{(a^4 - 9a^2 + 25)^3}}$$

$$D"(0) = -\frac{9}{5} < 0 \implies \text{Máximo}$$

$$D''\left(\frac{3}{\sqrt{2}}\right) = \frac{36\sqrt{19}}{19} > 0 \implies \text{mínimo}$$

$$D"\left(-\frac{3}{\sqrt{2}}\right) = \frac{36\sqrt{19}}{19} > 0 \implies \text{mínimo}$$

Luego los puntos que están a mínima distancia son: $P_1 = \left(\frac{3}{\sqrt{2}}, \frac{1}{2}\right) y P_2 = \left(-\frac{3}{\sqrt{2}}, \frac{1}{2}\right)$

La distancia es: $\frac{\sqrt{19}}{2}u$

Se sabe que $\lim_{x\to 0} \frac{x-\alpha \, senx}{x^2}$ es finito. Determina el valor de α y calcula el límite.

MATEMÁTICAS II. 2005. RESERVA 2. EJERCICIO 1. OPCIÓN A.

RESOLUCIÓN

Como $\lim_{x\to 0} \frac{x-\alpha \ senx}{x^2} = \frac{0}{0}$, le aplicamos la regla de L'Hôpital

$$\lim_{x \to 0} \frac{x - \alpha \, senx}{x^2} = \frac{0}{0} = \lim_{x \to 0} \frac{1 - \alpha \cos x}{2x} = \frac{1 - \alpha}{0}$$

Como nos dicen que el límite es finito deberíamos haber obtenido $\frac{0}{0}$, con lo cual, $1-\alpha=0 \Rightarrow \alpha=1$

Ahora, calculamos cuanto vale el límite para $\alpha = 1$

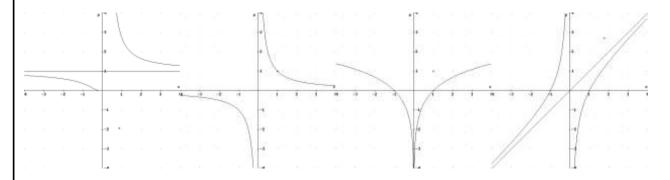
$$\lim_{x \to 0} \frac{x - \alpha \, senx}{x^2} = \frac{0}{0} = \lim_{x \to 0} \frac{1 - \alpha \cos x}{2x} = \frac{1 - \alpha}{0} = \frac{0}{0} = \lim_{x \to 0} \frac{sen \, x}{2} = \frac{0}{2} = 0$$

Considera las tres funciones cuyas expresiones respectivas vienen dadas, para $x \neq 0$, por

$$f(x) = \frac{x^2 - 1}{x}$$
; $g(x) = e^{\frac{1}{x}}$ y $h(x) = Ln|x|$

siendo Ln la función logaritmo neperiano.

- a) Halla las ecuaciones de las asíntotas de las gráficas de f, g y h.
- b) Identifica, entre las que siguen, la gráfica de cada función, justificando la respuesta.



Gráfica 1 Gráfica 2 Gráfica 3
MATEMÁTICAS II. 2005. RESERVA 2. EJERCICIO 1. OPCIÓN B.

RESOLUCIÓN

El dominio de la función f(x) es R – { 0 }

Asíntotas Verticales: La recta x = 0 es una asíntota vertical ya que $\lim_{x\to 0} f(x) = \pm \infty$

Asíntotas Horizontales: No tiene ya que $\lim_{x \to +\infty} f(x) = \infty$

Asíntota Oblicua: La ecuación es y = mx + n: Luego es: y = x

$$m = \lim_{x \to \infty} \frac{\frac{x^2 - 1}{x}}{x} = \lim_{x \to \infty} \frac{x^2 - x}{x^2} = 1; \ n = \lim_{x \to \infty} \left[\frac{x^2 - 1}{x} - 1x \right] = \lim_{x \to \infty} \frac{x^2 - 1 + x^2}{x} = \lim_{x \to \infty} \frac{2x^2 - 1}{x} = 0$$

Por lo tanto, su dibujo corresponde a la gráfica 4.

El dominio de la función g(x) es R $-\{0\}$

Asíntotas Verticales: La recta x = 0 es una asíntota vertical ya que $\lim_{x \to 0^+} g(x) = +\infty$

Asíntotas Horizontales: $\lim_{x \to \pm \infty} g(x) = e^{0} = 1$, luego es y = 1

Asíntota Oblicua: No tiene, ya que tiene asíntota horizontal.

Por lo tanto, su dibujo corresponde a la gráfica 1.

El dominio de la función h(x) es R $-\{0\}$.

Asíntotas Verticales: La recta x = 0 es una asíntota vertical ya que $\lim_{x \to 0} h(x) = -\infty$

Asíntotas Horizontales: No tiene ya que $\lim_{x \to \infty} h(x) = \infty$

Asíntota Oblicua: No tiene, ya que:

$$m = \lim_{x \to \infty} \frac{\ln|x|}{x} = \lim_{x \to \infty} \frac{1}{1} = 0; \quad n = \lim_{x \to \infty} \left[\ln|x| - 0 \cdot x \right] = \lim_{x \to \infty} \ln|x| = \infty$$

Por lo tanto, su dibujo corresponde a la gráfica 3.

Gráfica 4

De la función $f:(0,+\infty)\to\mathbb{R}$ definida por $f(x)=\frac{ax^2+b}{x}$ se sabe que la recta tangente a su gráfica en el punto de abscisa x = 1 viene dada por y = -2.

a) Calcula a y b.

b) Determina los intervalos de crecimiento y de decrecimiento de f.

MATEMÁTICAS II. 2005. RESERVA 3. EJERCICIO 1. OPCIÓN B.

RESOLUCIÓN

a) Calculamos la derivada de la función.

$$f'(x) = \frac{2ax \cdot x - 1 \cdot (ax^2 + b)}{x^2} = \frac{ax^2 - b}{x^2}$$

La recta tangente en x=1 tendrá de ecuación: $y-f(1)=f'(1)\cdot (x-1)$ y como nos dice el enunciado que esta recta es y = -2, se tiene que cumplir que:

$$\begin{cases}
f(1) = -2 \\
f'(1) = 0
\end{cases} \Rightarrow \frac{a+b}{1} = -2 \\
\frac{a-b}{1} = 0
\end{cases} \Rightarrow a = -1; b = -1$$

b) Calculamos la primera derivada y la igualamos a cero: $y' = \frac{-x^2 + 1}{x^2}$; $y' = 0 \Rightarrow x = \pm 1$

Como el dominio dice que es $(0, +\infty)$, sólo tomamos el valor x=1

		(0,1)	(1,∞)		
	Signo y'	+	_		
	Función	C	D		
Máximo (1,−2)					

Sea f la función definida para $x \neq 2$ por $f(x) = \frac{x^2 - 4x + 3}{x - 2}$

a) Estudia y determina las asíntotas de la gráfica de f.

b) Determina los intervalos de crecimiento y de decrecimiento de f.

c) Calcula, si existen, el máximo y el mínimo absolutos de f en el intervalo [0; 2) (puntos en los que se obtienen y valores que alcanza la función).

MATEMÁTICAS II. 2005. RESERVA 3. EJERCICIO 2. OPCIÓN A.

RESOLUCIÓN

a) El dominio de la función f(x) es $\mathbb{R} - \{2\}$

Asíntotas Verticales: La recta x = 2 es una asíntota vertical ya que $\lim_{x \to 2} f(x) = \pm \infty$

Asíntotas Horizontales: No tiene ya que $\lim_{x\to +\infty} f(x) = \infty$

Asíntota Oblicua: La ecuación es y = mx + n:

$$m = \lim_{x \to \infty} \frac{\frac{x^2 - 4x + 3}{x - 2}}{x} = \lim_{x \to \infty} \frac{x^2 - 4x + 3}{x^2 - 2x} = 1;$$

$$n = \lim_{x \to \infty} \left[\frac{x^2 - 4x + 3}{x - 2} - 1x \right] = \lim_{x \to \infty} \frac{x^2 - 4x + 3 - x^2 + 2x}{x - 2} = \lim_{x \to \infty} \frac{-2x + 3}{x - 2} = -2$$

$$y = x - 2$$

Luego es: y = x - 2

b) Calculamos la primera derivada y la igualamos a cero: $y' = \frac{x^2 - 4x + 5}{(x - 2)^2}$; $y' = 0 \Rightarrow NO$

	$(-\infty, 2)$	$(2,\infty)$	
Signo y '	+	+	
Función	C	C	

Luego la función es creciente en su dominio.

c) Los extremos absolutos se pueden alcanzar en los puntos donde la función no es continua, donde no es derivable o en los extremos del intervalo [0,2).

En nuestro caso la función f(x) es continua y derivable en $x \ne 2$. Luego sólo tenemos que estudiar en el punto x = 0. En este punto tiene un mínimo absoluto y vale $f(0) = -\frac{3}{2}$

Sea $f: \mathbb{R} \to \mathbb{R}$ la función definida por $f(x) = \frac{5x+8}{x^2+x+1}$

- a) Calcula los puntos de corte de la gráfica de f con los ejes coordenados.
- b) Halla las asíntotas de la gráfica de f.
- c) Determina los intervalos de crecimiento y de decrecimiento de f y calcula sus extremos relativos o locales (puntos en los que se obtienen y valores que alcanza la función).
- d) Esboza la gráfica de f.

MATEMÁTICAS II. 2005. RESERVA 4. EJERCICIO 1. OPCIÓN A.

RESOLUCIÓN

a) Punto de corte eje X
$$\Rightarrow$$
 y = 0 \Rightarrow 0 = $\frac{5x+8}{x^2+x+1}$; $x = -\frac{8}{5} \Rightarrow \left(-\frac{8}{5}, 0\right)$

Punto de corte eje Y $\Rightarrow x = 0 \Rightarrow y = \frac{8}{1}$; $y = 8 \Rightarrow (0,8)$

b) El dominio de la función f(x) es \mathbb{R}

Asíntotas Verticales: No tiene.

Asíntotas Horizontales:
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{5x+8}{x^2+x+1} = 0 \implies y = 0$$

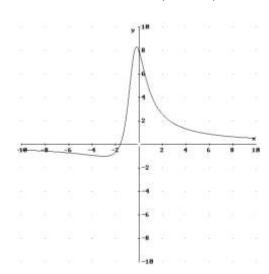
Asíntota Oblicua: No tiene ya que posee asíntota horizontal.

c) Calculamos la primera derivada y la igualamos a cero:
$$y' = \frac{-5x^2 - 16x - 3}{(x^2 + x + 1)^2} = 0 \Rightarrow x = -3$$
 $y = -\frac{1}{5}$

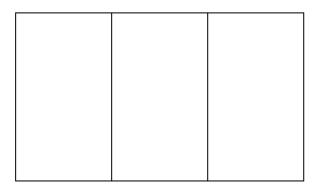
	$(-\infty, -3)$	$\left(-3,-\frac{1}{5}\right)$	$\left(-\frac{1}{5},\infty\right)$
Signo y '	-	+	1
Función	D	C	D

Mínimo (-3,-1) Máximo $\left(-\frac{1}{5},\frac{25}{3}\right)$

d)



De un terreno se desea vender un solar rectangular de $12.800 \ m^2$ dividido en tres parcelas iguales como las que aparecen en el dibujo. Si se quieren vallar las lindes de las tres parcelas (los bordes y las separaciones de las parcelas), determina las dimensiones del solar para que la longitud de la valla utilizada sea mínima.



MATEMÁTICAS II. 2005. RESERVA 4. EJERCICIO 1. OPCIÓN B.

RESOLUCIÓN

Llamamos x a la longitud e y al ancho del solar.

Paso 1: Escribimos la función que queremos que sea mínima: $L_{min} = 2x + 4y$

Paso 2: Escribimos la relación entre las variables: $x \cdot y = 12.800$; $y = \frac{12.800}{x}$

Paso 3: Sustituimos:
$$L_{\min} = 2x + 4y = 2x + 4 \cdot \frac{12.800}{x} = 2x + \frac{51.200}{x}$$

Paso 4: Derivamos e igualamos a cero:
$$L'_{min} = 2 - \frac{51.200}{x^2} = 0 \implies x = \pm 160$$

Paso 5: Calculamos la 2ª derivada.

$$L'' = \frac{102.400}{x^3} \Rightarrow \begin{cases} L''(x = 160) = 0'025 \Rightarrow m\text{inimo} \\ L''(x = -160) = -0'025 \Rightarrow M\text{aximo} \end{cases}$$

Luego las dimensiones del solar son x = 160 m; y = 80 m

Sea $f: \mathbb{R} \to \mathbb{R}$ la función definida por $f(x) = (x-1)^2 e^{-x}$

- a) Halla las asíntotas de la gráfica de f.
- b) Determina los intervalos de crecimiento y de decrecimiento de f y calcula, si existen, sus extremos relativos o locales y sus extremos absolutos o globales (puntos en los que se obtienen y valores que alcanza la función).
- c) Esboza la gráfica de f.

MATEMÁTICAS II. 2005. SEPTIEMBRE. EJERCICIO 2. OPCIÓN A.

RESOLUCIÓN

a) La función $f(x) = \frac{(x-1)^2}{e^x}$, no tiene asíntota vertical ya que no hay ningún valor de x que anule el denominador.

Vamos a ver si tiene asíntota horizontal

$$\lim_{x \to \infty} \frac{(x-1)^2}{e^x} = \frac{\infty}{\infty} = \lim_{x \to \infty} \frac{2(x-1)}{e^x} = \frac{\infty}{\infty} = \lim_{x \to \infty} \frac{2}{e^x} = \frac{2}{\infty} = 0$$

Por lo tanto, la asíntota horizontal es y = 0.

Como tiene asíntota horizontal, no puede tener asíntota oblicua.

b) Calculamos la primera derivada y la igualamos a cero: $y' = \frac{2(x-1)e^x - (x-1)^2 e^x}{(e^x)^2} = \frac{-x^2 + 4x - 3}{e^x}$

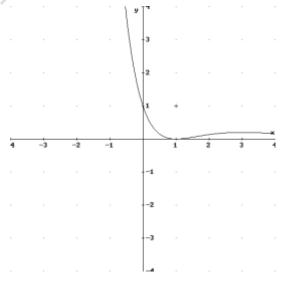
$$y'=0 \Rightarrow x=1; x=3$$

	(-∞,1)	(1,3)	(3,∞)
Signo y '	-(/	+	1
Función	D	C	D

mínimo (1.0) M

Máximo $(3, 4e^{-3})$

El punto (1,0), además de ser el mínimo relativo, es el mínimo absoluto. La función no tiene máximo absoluto.



De una función $f:[0,5] \to \mathbb{R}$ se sabe que f(3)=6 y que su función derivada está dada por:

$$f'(x) = \begin{cases} 5x - 2 & si \quad 0 < x < 1 \\ x^2 - 6x + 8 & si \quad 1 \le x < 5 \end{cases}$$

- a) Calcula la ecuación de la recta tangente a la gráfica de f en el punto de abscisa x=3.
- b) Determina los intervalos de crecimiento y de decrecimiento de f y calcula sus extremos relativos o locales (puntos en los que se obtienen y valores que alcanza la función). MATEMÁTICAS II, 2005. SEPTIEMBRE. EJERCICIO 1. OPCIÓN B.

RESOLUCIÓN

a) La recta tangente en x = 3 es $y - f(3) = f'(3) \cdot (x - 3)$

$$f(3) = 6$$
$$f'(x) = x^2 - 6x + 8 \Rightarrow f'(3) = 3^2 - 6 \cdot 3 + 8 = -1$$

Sustituyendo en la ecuación, tenemos, $y-6=-1\cdot(x-3) \Rightarrow y=-x+9$

b) Igualamos a cero la derivada: $y' = 5x - 2 = 0 \Rightarrow x = \frac{2}{5}$ $y' = x^2 - 6x + 8 = 0 \Rightarrow x = 2; x = 4$

	$(0,\frac{2}{5})$	$(\frac{2}{5},1)$	(1,2)	(2,4)	(4,5)
Signo y '	-	+	+	1	+
Función	D	С	С	D	С
$ \begin{array}{ccc} & \downarrow & \downarrow & \downarrow \\ & \text{mínimo}\left(\frac{2}{5}, \frac{133}{30}\right) & \text{Máximo}\left(2, \frac{20}{3}\right) \text{mínimo}\left(4, \frac{16}{3}\right) \end{array} $					

Para poder calcular las coordenadas del máximo y de los mínimos, necesitamos calcular la función f(x)

$$\int (5x-2)dx = \frac{5x^2}{2} - 2x + C; \int (x^2 - 6x + 8)dx = \frac{x^3}{3} - 3x^2 + 8x + D$$

Como
$$f(3) = 6 \Rightarrow 6 = \frac{27}{3} - 27 + 24 + D \Rightarrow D = 0$$

Como f(x) es continua en el punto x = 1, tenemos: $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) \Rightarrow \frac{5}{2} - 2 + C = \frac{1}{3} - 3 + 8 \Rightarrow C = \frac{29}{6}$

Luego:
$$f(x) = \begin{cases} \frac{5x^2}{2} - 2x + \frac{29}{6} & si \quad 0 < x < 1 \\ \frac{x^3}{3} - 3x^2 + 8x & si \quad 1 \le x < 5 \end{cases}$$