

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015

MATEMÁTICAS II

TEMA 5: INTEGRALES

- Junio, Ejercicio 2, Opción A
- Junio, Ejercicio 2, Opción B
- Reserva 1, Ejercicio 2, Opción A
- Reserva 1, Ejercicio 2, Opción B
- Reserva 2, Ejercicio 2, Opción A
- Reserva 2, Ejercicio 2, Opción B
- Reserva 3, Ejercicio 2, Opción A
- Reserva 3, Ejercicio 2, Opción B
- Reserva 4, Ejercicio 2, Opción A
- Reserva 4, Ejercicio 2, Opción B
- Septiembre, Ejercicio 2, Opción A
- Septiembre, Ejercicio 2, Opción B

Calcula
$$\int \frac{-x^2}{x^2 + x - 2} \, dx$$

MATEMÁTICAS II. 2015. JUNIO. EJERCICIO 2. OPCIÓN A

RESOLUCIÓN

Dividimos los dos polinomios, con lo cual la integral se descompone en:

$$\int \frac{-x^2}{x^2 + x - 2} dx = \int -1 dx + \int \frac{x - 2}{x^2 + x - 2} dx = -x + \int \frac{x - 2}{x^2 + x - 2} dx$$

Calculamos las raíces del denominador: $x^2 + x - 2 = 0 \Rightarrow x = 1$; x = -2

Descomponemos en fracciones simples:

$$\frac{x-2}{x^2+x-2} = \frac{A}{x-1} + \frac{B}{x+2} = \frac{A(x+2) + B(x-1)}{(x-1)\cdot(x+2)}$$

Como los denominadores son iguales, los numeradores también tienen que serlo. Para calcular *A* y *B* sustituimos los valores de las raíces en los dos numeradores.

$$x = 1 \Rightarrow -1 = 3A \Rightarrow A = -\frac{1}{3}$$
$$x = -2 \Rightarrow -4 = -3B \Rightarrow B = \frac{4}{3}$$

Con lo cual:

$$\int \frac{-x^2}{x^2 + x - 2} dx = -x + \int \frac{x - 2}{x^2 + x - 2} dx = -x + \int \frac{-\frac{1}{3}}{(x - 1)} dx + \int \frac{\frac{4}{3}}{(x + 2)} dx =$$

$$= -x - \frac{1}{3} \ln|x - 1| + \frac{4}{3} \ln|x + 2| + C$$

Determina la función $f:(0,+\infty)\to\mathbb{R}$ sabiendo que $f''(x)=\ln(x)$ y que su gráfica tiene tangente horizontal en el punto P(1,2). (In denota la función logaritmo neperiano). MATEMÁTICAS II. 2015. JUNIO. EJERCICIO 2. OPCIÓN B.

RESOLUCIÓN

Integramos, por partes, para calcular f'(x)

$$f'(x) = \int \ln(x) dx = x \ln x - \int dx = x \ln x - x + C$$

$$u = \ln(x); du = \frac{1}{x} dx$$
$$dv = dx; v = x$$

Volvemos a integrar, por partes, para calcular f(x)

$$f(x) = \int (x \ln x - x + C) \, dx = \int x \ln x \, dx - \int x \, dx + \int C \, dx = \int x \ln x \, dx - \frac{x^2}{2} + Cx =$$

$$= \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx - \frac{x^2}{2} + Cx = \frac{x^2}{2} \ln x - \frac{x^2}{4} - \frac{x^2}{2} + Cx + D = \frac{x^2}{2} \ln x - \frac{3x^2}{4} + Cx + D$$

$$u = \ln(x); du = \frac{1}{x} dx$$
$$dv = xdx; v = \frac{x^2}{2}$$

Calculamos el valor de las constantes C y D.

Tangente horizontal
$$\Rightarrow$$
 $f'(1) = 0 \Rightarrow 0 = 1 \cdot \ln 1 - 1 + C \Rightarrow C = 1$
Pasa por el punto $(1,2) \Rightarrow f(1) = 2 \Rightarrow 2 = \frac{1 \cdot \ln 1}{2} - \frac{3}{4} + 1 + D \Rightarrow D = \frac{7}{4}$

Luego, la primitiva que nos piden es: $f(x) = \frac{x^2}{2} \ln x - \frac{3x^2}{4} + x + \frac{7}{4}$

Calcula
$$\int \frac{dx}{(x-2)\sqrt{x+2}}$$
 (Sugerencia $\sqrt{x+2} = t$)

MATEMÁTICAS II. 2015. RESERVA 1. EJERCICIO 2. OPCIÓN A.

RESOLUCIÓN

Como el cambio es $t = \sqrt{x+2}$, vamos a calcular cuánto vale dx y x:

$$dt = \frac{1}{2 \cdot \sqrt{x+2}} dx \Rightarrow dx = 2 \cdot \sqrt{x+2} dt = 2t dt$$
$$t = \sqrt{x+2} \Rightarrow t^2 = x+2 \Rightarrow x = t^2 - 2$$

Sustituimos en la integral el cambio de variable

$$\int \frac{dx}{(x-2)\sqrt{x+2}} = \int \frac{2t\,dt}{(t^2-2-2)\cdot t} = \int \frac{2t\,dt}{(t^2-4)\cdot t} = \int \frac{2dt}{(t^2-4)\cdot t}$$

Es una integral racional con raíces reales simples. Descomponemos en fracciones simples:

$$\frac{2}{t^2 - 4} = \frac{A}{t + 2} + \frac{B}{t - 2} = \frac{A(t - 2) + B(t + 2)}{t^2 - 4}$$

Como los denominadores son iguales, los numeradores también tienen que serlo. Para calcular A, y B sustituimos los valores de las raíces en los dos numeradores

$$t = 2 \Rightarrow 2 = 4B \Rightarrow B = \frac{1}{2}$$
$$t = -2 \Rightarrow 2 = -4A \Rightarrow A = -\frac{1}{2}$$

Con lo cual:

$$\int \frac{2dt}{(t^2 - 4)} = \int \frac{Adt}{t + 2} + \int \frac{Bdt}{t - 2} = -\frac{1}{2} \ln|t + 2| + \frac{1}{2} \ln|t - 2| + C$$

Deshacemos el cambio de variable:

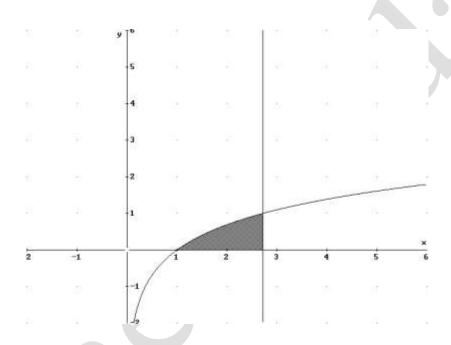
$$\int \frac{2dt}{(t^2 - 4)} = -\frac{1}{2} \ln |t + 2| + \frac{1}{2} \ln |t - 2| + C = -\frac{1}{2} \ln |\sqrt{x + 2} + 2| + \frac{1}{2} \ln |\sqrt{x + 2} - 2| + C$$

Sea g la función definida por $g(x) = \ln(x)$ para x > 0 (In denota la función logaritmo neperiano). Calcula el valor de a > 1 para el que el área del recinto limitado por la gráfica de g, el eje de abscisas y la recta x = a es 1.

MATEMÁTICAS II. 2015. RESERVA 1. EJERCICIO 2. OPCIÓN B.

RESOLUCIÓN

El recinto es:



Calculamos el área.

$$A = \int_{1}^{a} \ln x \, dx$$

Hacemos la integral por partes:

$$u = \ln x; \ du = \frac{1}{x} dx$$

$$dv = dx; \ v = x$$

$$\int \ln x \ dx = x \ln x - \int dx = x \ln x - x + C$$

$$A = \int_{1}^{a} \ln x \, dx = \left[x \ln x - x \right]_{1}^{a} = (a \ln a - a) - (1 \ln 1 - 1) = a \ln a - a + 1 = 1 \Rightarrow a \ln a - a = 0 \Rightarrow \ln a = 1 \Rightarrow e^{1} = a$$

Luego: a = e

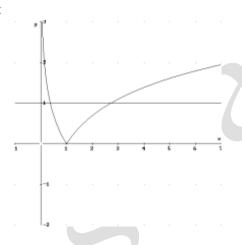
Sea f la función definida por $f(x) = |\ln(x)|$ para x > 0 (In denota la función logaritmo neperiano).

- a) Esboza el recinto limitado por la gráfica de f y la recta y = 1.
- b) Calcula los puntos de corte de la gráfica de f con la recta y = 1.
- c) Calcula el área del recinto citado.

MATEMÁTICAS II. 2015. RESERVA 2. EJERCICIO 2. OPCIÓN A.

RESOLUCIÓN

a) Dibujamos las dos funciones:



b) Calculamos los puntos de corte de las dos funciones

$$\left| \ln x \right| = 1 \Longrightarrow \begin{cases} \ln x = 1 \Longrightarrow x = e \\ -\ln x = 1 \Longrightarrow x = e^{-1} = \frac{1}{e} \end{cases}$$

Calculamos el área que nos piden

$$A = \int_{\frac{1}{e}}^{1} \left[1 - (-\ln x) \right] dx + \int_{1}^{e} \left[1 - (\ln x) \right] dx = \left[x + x \ln x - x \right]_{\frac{1}{e}}^{1} + \left[x - x \ln x + x \right]_{1}^{e} = \frac{1}{e} + e - 2 u^{2}$$

Recuerda que la integral de lnx es por partes:

$$\int \ln x \, dx = x \ln x - \int dx = x \ln x - x + C$$

$$u = \ln x; \ du = \frac{1}{x} dx$$
$$dv = dx; \ v = x$$

Calcula $\int e^{2x} sen(x) dx$

MATEMÁTICAS II. 2015. RESERVA 2. EJERCICIO 2. OPCIÓN B.

RESOLUCIÓN

Hacemos la integral por partes.

$$\int e^{2x} \cdot \operatorname{sen} x \, dx = -e^{2x} \cdot \cos x + 2 \int e^{2x} \cdot \cos x \, dx = -e^{2x} \cdot \cos x + 2 \left[e^{2x} \cdot \operatorname{sen} x - 2 \int e^{2x} \cdot \operatorname{sen} x \, dx \right]$$

$$u = e^{2x}; \quad du = 2e^{2x} \, dx$$

$$dv = \operatorname{sen} x \, dx; \quad v = -\cos x$$

$$u = e^{2x}; \quad du = 2e^{2x} \, dx$$

$$dv = \cos x \, dx; \quad v = \operatorname{sen} x$$

$$I = -e^{2x} \cdot \cos x + 2 \left[e^{2x} \cdot \operatorname{sen} x - 2 \cdot I \right]$$
$$I + 4I = -e^{2x} \cdot \cos x + 2e^{2x} \cdot \operatorname{sen} x$$

$$I = \frac{-e^{2x} \cdot \cos x + 2e^{2x} \cdot \operatorname{sen} x}{5} + C$$

Sea f la función definida por $f(x) = \frac{\ln(x)}{2x}$ para x > 0 (In denota la función logaritmo neperiano) y sea F la primitiva de f tal que F(1) = 2.

a) Calcula F'(e).

b) Halla la ecuación de la recta tangente a la gráfica de F en el punto de abscisa x=e . MATEMÁTICAS II. 2015. RESERVA 3. EJERCICIO 2. OPCIÓN A.

RESOLUCIÓN

a) Como F(x) es una primitiva de f(x), entonces: $F(x) = \int f(x) \, dx$, y además: F'(x) = f(x). Por lo tanto:

$$F'(e) = f(e) = \frac{\ln e}{2e} = \frac{1}{2e}$$

b) Calculamos F(x). Para ello hacemos el cambio de variable $\ln x = t$, con lo cual $\ln x = t \Rightarrow \frac{1}{x} dx = dt$

$$F(x) = \int \frac{\ln x}{2x} dx = \int \frac{t}{2} dt = \frac{t^2}{4} + C = \frac{(\ln x)^2}{4} + C$$

Como
$$F(1) = 2 \Rightarrow \frac{(\ln 1)^2}{4} + C = 2 \Rightarrow C = 2$$

Por lo tanto:
$$F(x) = \frac{(\ln x)^2}{4} + 2$$

Calculamos la recta tangente que nos piden: $y - F(e) = F'(e) \cdot (x - e)$

$$F(e) = \frac{(\ln e)^2}{4} + 2 = \frac{1}{4} + 2 = \frac{9}{4}$$
$$F'(e) = f(e) = \frac{\ln e}{2e} = \frac{1}{2e}$$

Luego, la recta tangente es: $y - \frac{9}{4} = \frac{1}{2e} \cdot (x - e)$

Sean $f:[0,\infty)\to\mathbb{R}$ y $g:\mathbb{R}\to\mathbb{R}$ las funciones definidas por $f(x)=\sqrt{2x}$ y $g(x)=\frac{1}{2}x^2$.

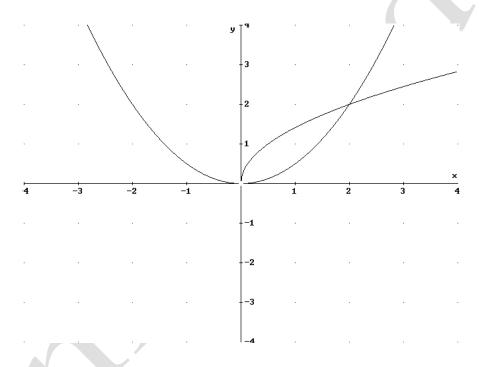
a) Halla los puntos de corte de las gráficas de f y g. Haz un esbozo del recinto que limitan.

b) Calcula el área de dicho recinto.

MATEMÁTICAS II. 2015. RESERVA 3. EJERCICIO 2. OPCIÓN B.

RESOLUCIÓN

a) Las dos funciones podemos representarlas haciendo una tabla de valores.



En el dibujo vemos que los puntos de corte son el (0,0) y (2,2).

b) Luego, el área que nos piden es:

$$A = \int_0^2 \left[\sqrt{2x} - \frac{1}{2} x^2 \right] dx = \left[\frac{2\sqrt{2} x^{\frac{3}{2}}}{3} - \frac{x^3}{6} \right]_0^2 = \frac{4}{3} u^2$$

Calcula el valor de a>1 sabiendo que el área del recinto comprendido entre la parábola $y=-x^2+ax$ y la recta y=x es $\frac{4}{3}$.

MATEMÁTICAS II. 2015. RESERVA 4. EJERCICIO 2. OPCIÓN A.

RESOLUCIÓN

Calculamos los puntos de corte entre las dos funciones.

$$y = -x^{2} + ax$$

$$y = x$$

$$\Rightarrow x^{2} + (1 - a)x = 0 \Rightarrow x = 0 ; x = a - 1$$

Calculamos el área:

$$A = \int_0^{a-1} (-x^2 + ax - x) dx = \left[-\frac{x^3}{3} + \frac{ax^2}{2} - \frac{x^2}{2} \right]_0^{a-1} = -\frac{(a-1)^3}{3} + \frac{a(a-1)^2}{2} - \frac{(a-1)^2}{2} = \frac{4}{3} \Rightarrow$$

$$\Rightarrow a^3 - 3a^2 + 3a - 9 = 0$$

Resolviendo la ecuación por Ruffini, sale que a = 3

Sea f la función definida por $f(x) = \frac{x^2 + 1}{x^2(x - 1)}$ para $x \neq 0$ y $x \neq 1$ y sea F la primitiva de f cuya

gráfica pasa por el punto $P(2, \ln 2)$ (ln denota logaritmo neperiano).

- a) Calcula la recta tangente a la gráfica de F en el punto P.
- b) Determina la función F.

MATEMÁTICAS II. 2015. RESERVA 4. EJERCICIO 2. OPCIÓN B.

RESOLUCIÓN

a) Como F(x) es una primitiva de f(x), entonces: $F(x) = \int f(x) dx$, y además: F'(x) = f(x).

Calculamos la recta tangente que nos piden: $y - F(2) = F'(2) \cdot (x - 2)$

$$F(2) = \ln 2$$

$$F'(2) = f(2) = \frac{4+1}{4} = \frac{5}{4}$$

Luego, la recta tangente es: $y - \ln 2 = \frac{5}{4} \cdot (x - 2)$

b) Calculamos
$$\int \frac{x^2 + 1}{x^2 \cdot (x - 1)} dx$$

Las raíces del denominador son: x = 0; x = 0; x = 1

Descomponemos en fracciones simples:

$$\frac{x^2+1}{x^2\cdot(x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1} = \frac{A\cdot x\cdot(x-1) + B(x-1) + C\cdot x^2}{x^2\cdot(x-1)}$$

Como los denominadores son iguales, los numeradores también tienen que serlo. Para calcular A, B y C sustituimos los valores de las raíces en los dos numeradores más otro valor que puede ser x = 2

$$x = 0 \Rightarrow 1 = -B \Rightarrow B = -1$$

$$x = 1 \Rightarrow 2 = C \Rightarrow C = 2$$

$$x = 2 \Rightarrow 5 = 2A + B + 4C \Rightarrow A = -1$$

Con lo cual:

$$F(x) = \int \frac{x^2 + 1}{x^2 \cdot (x - 1)} dx = \int \frac{-1}{x} dx + \int \frac{-1}{x^2} dx + \int \frac{2}{x - 1} dx = -\ln x + \frac{1}{x} + 2\ln(x - 1) + C$$

Como F(x) pasa por el punto $(2, \ln 2)$ entonces: $\ln 2 = -\ln 2 + \frac{1}{2} + 2\ln 1 + C \Rightarrow C = 2\ln 2 - \frac{1}{2}$

Por lo tanto:
$$F(x) = -\ln x + \frac{1}{x} + 2\ln(x-1) + 2\ln 2 - \frac{1}{2}$$

Calcula
$$\int_0^{\pi} x^2 sen(x) dx$$
.

MATEMÁTICAS II. 2015. SEPTIEMBRE. EJERCICIO 2. OPCIÓN A.

RESOLUCIÓN

Vamos a calcular la integral $F(x) = \int x^2 sen(x) dx$, que es una integral por partes.

$$F(x) = \int x^2 sen(x) dx = -x^2 \cdot \cos x + 2 \int x \cdot \cos x dx = -x^2 \cdot \cos x + 2 \cdot \left[x \cdot sen(x) - \int sen(x) dx \right] =$$

$$= -x^2 \cdot \cos x + 2x \cdot sen(x) + 2\cos x + C$$

$$u = x^{2}$$
; $du = 2x dx$
 $dv = sen x dx$; $v = -cos x$

$$u = x$$
; $du = dx$
 $dv = \cos x \, dx$; $v = \sin x$

Por lo tanto, la integral que nos piden valdrá:

$$\int_0^{\pi} x^2 sen(x) dx = \left[-x^2 \cdot \cos x + 2x \cdot sen x + 2\cos x \right]_0^{\pi} =$$

$$= \left(-\pi^2 \cdot \cos \pi + 2\pi \cdot sen \pi + 2\cos \pi \right) - \left(-0^2 \cdot \cos 0 + 2 \cdot 0 \cdot sen 0 + 2\cos 0 \right) =$$

$$= \pi^2 - 2 - 2 = \pi^2 - 4$$

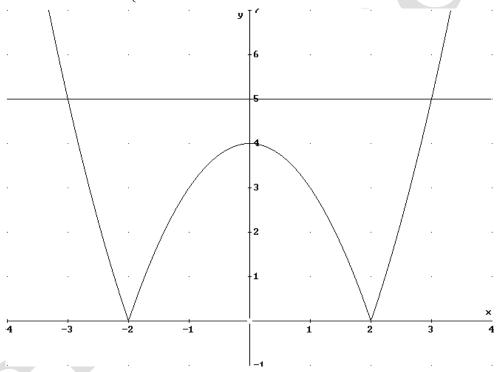
Sea $f: \mathbb{R} \to \mathbb{R}$ la función definida por: $f(x) = |x^2 - 4|$

- a) Haz un esbozo de la gráfica de f.
- b) Calcula el área del recinto limitado por la gráfica de f y la recta y = 5.

MATEMÁTICAS II. 2015. SEPTIEMBRE. EJERCICIO 2. OPCIÓN B.

RESOLUCIÓN

a) Abrimos la función: $f(x) = \begin{cases} x^2 - 4 & si \quad x < -2 \\ -x^2 + 4 & si \quad -2 \le x \le 2, \text{ y hacemos el dibujo} \\ x^2 - 4 & si \quad x > 2 \end{cases}$



b) Vemos por el dibujo que es simétrica respecto el eje OY, luego:

$$A = 2\left[\int_{0}^{2} (5 + x^{2} - 4) dx + \int_{2}^{3} (5 - x^{2} + 4) dx\right] = 2\left[\int_{0}^{2} (1 + x^{2}) dx + \int_{2}^{3} (9 - x^{2}) dx\right] =$$

$$= 2\left[\left[x + \frac{x^{3}}{3}\right]_{0}^{2} + \left[9x - \frac{x^{3}}{3}\right]_{2}^{3}\right] = 2\left[\left[2 + \frac{8}{3}\right] + \left[27 - \frac{27}{3}\right] - \left[18 - \frac{8}{3}\right]\right] = \frac{44}{3}u^{2}$$