

EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD

CONVOCATORIA DE JUNIO DE 2017

EJERCICIO DE: MATEMÁTICAS II

TIEMPO DISPONIBLE: 1 hora 30 minutos

PUNTUACIÓN QUE SE OTORGARÁ A ESTE EJERCICIO: (véanse las distintas partes del examen)

Elija una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.

OPCIÓN A

1. (3 puntos)

a) (2 puntos) Clasifique el siguiente sistema de ecuaciones, según los diferentes valores de la constante real λ :

$$x + y = 1$$

$$\lambda x + z = 0$$

$$x + (1 + \lambda)y + \lambda z = \lambda + 1$$

b) (1 punto) Halle la solución, si existe, cuando $\lambda = 1$.

SOLUCIÓN

 $\textbf{a)} \text{ La matriz de los coeficientes es} \quad A = \begin{pmatrix} 1 & 1 & 0 \\ \lambda & 0 & 1 \\ 1 & 1+\lambda & \lambda \end{pmatrix} \text{ y la matriz ampliada } B = \begin{pmatrix} 1 & 1 & 0 & 1 \\ \lambda & 0 & 1 & 0 \\ 1 & 1+\lambda & \lambda & \lambda+1 \end{pmatrix}.$

Estudiemos sus rangos según los posibles valores de λ :

En la matriz A, el mayor rango posible es 3:

$$\begin{vmatrix} 1 & 1 & 0 \\ \lambda & 0 & 1 \\ 1 & 1+\lambda & \lambda \end{vmatrix} = 1 - \lambda^2 - 1 - \lambda = -\lambda^2 - \lambda = -\lambda(\lambda+1) = 0 \implies \lambda = -1$$

• Para $\lambda \neq -1$ y $\lambda \neq 0$: rgA = rgB = 3 = nº de incógnitas ⇒ el sistema es compatible determinado

■ Para
$$\lambda = -1$$
: rg A = 2 pues el menor $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \neq 0$.

Estudiemos si el rango de B es 3. Para ello, orlamos el menor anterior con los términos independientes (sustituyendo λ por -1, naturalmente):

$$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \end{vmatrix} = 0 \implies rgB = 2$$

Por lo tanto: $rgA = rgB = 2 < n^{o}$ de incógnitas \Rightarrow el sistema es compatible indeterminado.

■ Para $\lambda = 0$: rgA = 2 por el mismo motivo de antes. Estudiemos el rango de B:

Orlamos el menor de orden 2 con los términos independientes (sustituyendo λ por 0): $\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = 0 \implies rgB = 2$

Por lo tanto: $rgA = rgB = 2 < n^9$ de incógnitas \Rightarrow el sistema es compatible indeterminado.

b) Para $\lambda = 1$ el sistema es compatible determinado. Lo resolvemos por la regla de Cramer:

$$x = \frac{\begin{vmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 2 & 1 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 2 & 1 \end{vmatrix}} = \frac{2-2}{1-1-2} = \frac{0}{-2} = 0 \quad ; \quad y = \frac{\begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 2 & 1 \end{vmatrix}}{-2} = \frac{1-1-2}{-2} = 1 \quad ; \quad z = \frac{\begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 2 & 2 \end{vmatrix}}{-2} = \frac{0}{-2} = 0$$

- 2. (2 puntos)
 - a) (1 punto) Determine la posición relativa de las dos rectas siguientes:

$$r: \begin{cases} x = 1 + t \\ y = 1 + t \\ z = t \end{cases} \qquad s: \begin{cases} 2x - y = 0 \\ 3y - 2z = 0 \end{cases}$$

b) (1 punto) Determine la distancia del punto P(0,0,0) a cada una de las dos rectas anteriores.

SOLUCIÓN

- a) Consideremos un punto y un vector direccional de cada una de las rectas:
- Como la recta r viene dada por su forma paramétrica: A(1,1,0) es un punto y $\vec{u} = (1,1,1)$ un vector direccional.
- La recta s está expresada como intersección de dos planos. Si obtenemos dos puntos B y C de la misma, tendremos un punto (por ejemplo, B) y un vector direccional $\vec{v} = \overrightarrow{BC}$.

$$\begin{cases} 2x - y = 0 \\ 3y - 2z = 0 \end{cases} \Rightarrow \begin{cases} x = \frac{y}{2} \\ z = \frac{3y}{2} \end{cases} \Rightarrow \begin{vmatrix} Para \ y = 0: \ x = 0 \ , \ z = 0 \ \Rightarrow \ B(0, 0, 0) \\ Para \ y = 2: \ x = 1 \ , \ z = 3 \ \Rightarrow \ C(1, 2, 3) \end{cases} \Rightarrow \vec{v} = \overrightarrow{BC} = (1, 2, 3)$$

• Puesto que las coordenadas de \vec{u} y \vec{v} no son proporcionales, las rectas r y s no son paralelas ni coincidentes. Deben cortarse o cruzarse. Para decidirlo, consideremos un vector de origen en la recta r y extremo en s: $\vec{w} = \overrightarrow{AC} = (0,1,3)$ y estudiemos si los vectores \vec{u} , \vec{v} y \vec{w} son linealmente independientes (las rectas se cruzan) o dependientes (las rectas se cortan):

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 1 & 3 \end{vmatrix} = 6 + 1 - 3 - 3 \neq 0 \implies \vec{u}, \vec{v} \vec{v} \vec{w}$$
 son linealmente independientes \implies las rectas se cruzan.

b) • Para calcular la distancia desde el punto P a la recta r calcularemos el plano π perpendicular a r que pasa por P, el punto Q de intersección del plano y la recta y la distancia entre P y Q que será la distancia buscada.

El vector $\vec{u} = (1,1,1)$ es perpendicular al plano π por lo que $\pi: x+y+z+D=0$. Y como el plano debe pasar por $P(0,0,0): 0+0+0+D=0 \implies D=0 \implies \pi: x+y+z=0$.

Coordenadas de Q, intersección de r y π :

$$\begin{cases} x = 1 + t \\ y = 1 + t \\ z = t \\ x + y + z = 0 \end{cases} \Rightarrow 1 + t + 1 + t + t = 0 \Rightarrow 3t + 2 = 0 \Rightarrow t = -\frac{2}{3} \Rightarrow y = 1 - \frac{2}{3} = \frac{1}{3} \Rightarrow Q\left(\frac{1}{3}, \frac{1}{3}, -\frac{2}{3}\right)$$

Y, por tanto:
$$d(P,r) = d(P,Q) = \sqrt{\left(\frac{1}{3} - 0\right)^2 + \left(\frac{1}{3} - 0\right)^2 + \left(-\frac{2}{3} - 0\right)^2} = \sqrt{\frac{1}{9} + \frac{1}{9} + \frac{4}{9}} = \frac{\sqrt{6}}{3}$$

• Puesto que $P(0,0,0) \in s$: d(P,s) = 0

- 3. (4 puntos)
 - a) (3 puntos) Considere la función de variable real x siguiente:

$$f(x) = x(\ln(x))^2$$

- **a.1)** (0,5 puntos) Determine el dominio de la función f(x).
- a.2) (1,5 puntos) Determine los intervalos de crecimiento y de decrecimiento de esa función.
- **a.3)** (1 punto) Determine, si existen, los máximos y mínimos relativos y, en ese caso, calcule el valor de la función f(x) en cada uno de ellos.
- **b)** (1 punto) Determine el valor de la constante k para que se verifique que:

$$\lim_{x \to +\infty} \sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} = \frac{5}{3}$$

SOLUCIÓN

- **a.1)** Se trata del producto de dos funciones continuas cuyo dominio es la intersección de los dominios de cada una de ellas. El primer factor, $f_1(x) = x$, tiene por dominio $\mathbb R$. La función $f_2(x) = \ln x$ tiene por dominio $(0, +\infty)$ y su cuadrado también. Por lo tanto: $Dom(f) = (0, +\infty)$
- a.2) Los intervalos de crecimiento y decrecimiento dependen del signo de la primera derivada.

$$f'(x) = \left(\ln x\right)^2 + x \cdot 2 \ln x \cdot \frac{1}{x} = \left(\ln x\right)^2 + 2 \ln x = \ln x \left(\ln x + 2\right) = 0 \quad \Rightarrow \quad \begin{cases} \ln x = 0 & \Rightarrow x = 1 \\ \ln x + 2 = 0 & \Rightarrow \ln x = -2 \\ \Rightarrow & x = e^{-2} \end{cases}$$

Puesto que la función no tiene discontinuidades en su dominio, se tiene:

$$f' > 0 \qquad f' < 0 \qquad f' > 0 \qquad f(x) \text{ es creciente } \forall x \in \left(0, e^{-2}\right) \cup \left(1, +\infty\right)$$

$$0 \qquad e^{-2} \qquad 1 \qquad f(x) \text{ es decreciente } \forall x \in \left(e^{-2}, 1\right)$$

a.3) Puesto que la función es continua en su dominio, los intervalos de crecimiento y decrecimiento nos ofrecen los puntos de máximo y mínimo relativos:

Punto de máximo relativo en $x = e^{-2}$. Además: $f(e^{-2}) = e^{-2} \cdot \left(Ine^{-2}\right)^2 = e^{-2} \cdot \left(-2\right)^2 = 4e^{-2}$

Punto de mínimo relativo en x = 1. El valor de la función es: $f(1) = 1 \cdot (ln1)^2 = 1 \cdot 0 = 0$

b) Calculemos el límite:

$$\lim_{x \to +\infty} \left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right) = \infty - \infty = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right) \left(\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5} \right)}{\left(\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5} \right)} = \infty - \infty = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right) \left(\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5} \right)}{\left(\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5} \right)} = \infty - \infty = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right) \left(\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5} \right)}{\left(\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5} \right)} = \infty - \infty = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right) \left(\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5} \right)}{\left(\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5} \right)} = \infty - \infty = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right) \left(\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5} \right)}{\left(\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5} \right)} = \infty - \infty = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right) \left(\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5} \right)}{\left(\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5} \right)} = \infty - \infty = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right) \left(\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5} \right)}{\left(\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5} \right)} = \infty - \infty = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right) \left(\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5} \right)}{\left(\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5} \right)} = \infty - \infty = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right)}{\left(\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5} \right)} = \infty - \infty = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right)}{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right)} = \infty - \infty = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right)}{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right)} = \infty - \infty = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right)}{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right)} = \infty - \infty = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right)}{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right)} = \infty - \infty = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right)}{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right)} = \infty - \infty = \min_{x \to +\infty} \frac{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right)}{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right)} = \infty - \infty = \min_{x \to +\infty} \frac{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x + 5} \right)}{\left(\sqrt{x^2 + kx - 7} - \sqrt{x^2 - 2x +$$

$$= \lim_{x \to +\infty} \frac{x^2 + kx - 7 - x^2 + 2x - 5}{\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5}} = \lim_{x \to +\infty} \frac{(k+2)x - 12}{\sqrt{x^2 + kx - 7} + \sqrt{x^2 - 2x + 5}} = \frac{\infty}{\infty} = \frac{k+2}{1+1} = \frac{k+2}{2} \implies \frac{k+2}{2} = \frac{5}{3} \implies k = \frac{4}{3}$$

- **4.** (1 punto) En una clase de bachillerato hay 10 chicas y 8 chicos. De ellos 3 chicas y 4 chicos juegan al ajedrez. Si escogemos un estudiante al azar, determine las siguiente probabilidades:
 - a) (0,5 puntos) Sea chica y no juegue al ajedrez.
 - b) (0,5 puntos) No juegue al ajedrez sabiendo que es chico.

SOLUCIÓN.

Sea C el suceso "es chica", \overline{C} el suceso "es chico", A el suceso "juega al ajedrez" y \overline{A} el suceso "no juega al ajedrez".

a)
$$p(C \cap \overline{A}) = p(C) \cdot p(\overline{A}/C) = \frac{10}{18} \cdot \frac{7}{10} = \frac{7}{18} = 0.3889$$

b)	$p(\overline{A}/\overline{C})=$	$p(\overline{A} \cap \overline{C})$	_ 4 .	8	_ 4 _	1_0	=0,5
		$p(\overline{C})$	18	18	8	2	

También se podría haber organizado la información en una tabla de contingencia:

	JUEGA AJEDREZ (A)	NO JUEGA AJEDREZ (Ā)	TOTAL
CHICA (C)	3	7	10
CHICO (\overline{c})	4	4	8
TOTAL	7	11	18

a)
$$p(C \cap \overline{A}) = \frac{7}{18}$$

b)
$$p(\bar{A}/\bar{C}) = \frac{4}{8} = \frac{1}{2} = 0.5$$

OPCIÓN B

- 1. (3 puntos)
 - a) (2 puntos) Sea A una matriz de dimensión 3 x 3 y denotamos por |A| el determinante de la matriz.
 - **a.1)** (1 punto) Considere la matriz $B = \left(\frac{1}{2}\right)A$. Si |B| = 1, calcule el determinante de A, es decir: |A|.
 - a.2) (1 punto) Si

$$A = \begin{pmatrix} x & 1 & 1 \\ x - 1 & 2 & 0 \\ 2 & x - 1 & 2 \end{pmatrix}$$

Determine los valores de x para los que se cumple que |B| = 1, siendo $B = \left(\frac{1}{2}\right)A$.

b) (1 punto) Determine las matrices cuadradas de dimensión 2 x 2 de la forma

$$M = \begin{pmatrix} 1 & x \\ 0 & y \end{pmatrix}$$

que verifiquen que

$$MM' = \left(\begin{array}{cc} 1 & 0 \\ 0 & 4 \end{array} \right)$$

donde M' representa la matriz traspuesta de M.

SOLUCIÓN

a.1) Cuando los elementos de una línea de una matriz se multiplican por un número, el determinante de la matriz queda multiplicado por ese número. En la matriz $B = \frac{1}{2} \cdot A$ las tres líneas de A se multiplican por $\frac{1}{2}$ por lo que:

$$\left| B \right| = \frac{1}{8} \cdot \left| A \right| \implies 1 = \frac{1}{8} \cdot \left| A \right| \implies \left| A \right| = 8$$

a.2)
$$B = \frac{1}{2} \cdot \begin{pmatrix} x & 1 & 1 \\ x - 1 & 2 & 0 \\ 2 & x - 1 & 2 \end{pmatrix} = \begin{pmatrix} \frac{x}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{x - 1}{2} & 1 & 0 \\ 1 & \frac{x - 1}{2} & 1 \end{pmatrix} \Rightarrow |B| = \begin{vmatrix} \frac{x}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{x - 1}{2} & 1 & 0 \\ 1 & \frac{x - 1}{2} & 1 \end{vmatrix} = \frac{x}{2} + \frac{(x - 1)^2}{8} - \frac{1}{2} - \frac{x - 1}{4} = \frac{x - 1}{2} = \frac{x - 1}{2}$$

$$= \frac{4x + x^2 - 2x + 1 - 4 - 2x + 2}{8} = \frac{x^2 - 1}{8} = 1 \implies x^2 - 1 = 8 \implies x^2 = 9 \implies x = \pm 3$$

$$\textbf{b)} \quad \textbf{M} = \begin{pmatrix} \textbf{1} & \textbf{x} \\ \textbf{0} & \textbf{y} \end{pmatrix} \implies \textbf{M}^t = \begin{pmatrix} \textbf{1} & \textbf{0} \\ \textbf{x} & \textbf{y} \end{pmatrix} \implies \textbf{M} \textbf{M}^t = \begin{pmatrix} \textbf{1} & \textbf{x} \\ \textbf{0} & \textbf{y} \end{pmatrix} \cdot \begin{pmatrix} \textbf{1} & \textbf{0} \\ \textbf{x} & \textbf{y} \end{pmatrix} = \begin{pmatrix} \textbf{1} + \textbf{x}^2 & \textbf{xy} \\ \textbf{xy} & \textbf{y}^2 \end{pmatrix} = \begin{pmatrix} \textbf{1} & \textbf{0} \\ \textbf{0} & \textbf{4} \end{pmatrix} \implies \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{1} & \textbf{x} \\ \textbf{0} & \textbf{y} \end{pmatrix} \cdot \begin{pmatrix} \textbf{1} & \textbf{0} \\ \textbf{x} & \textbf{y} \end{pmatrix} = \begin{pmatrix} \textbf{1} + \textbf{x}^2 & \textbf{xy} \\ \textbf{xy} & \textbf{y}^2 \end{pmatrix} = \begin{pmatrix} \textbf{1} & \textbf{0} \\ \textbf{0} & \textbf{4} \end{pmatrix} \implies \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{1} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{1} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{1} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} \end{pmatrix} \Rightarrow \textbf{M} = \begin{pmatrix} \textbf{0} & \textbf$$

$$\Rightarrow \begin{vmatrix} y^2 = 4 & \Rightarrow y = \pm 2 \\ 1 + x^2 = 1 & \Rightarrow x^2 = 0 & \Rightarrow x = 0 \end{vmatrix}$$

Para los valores de x e y encontrados los otros dos términos de las dos matrices iguales también coinciden.

- 2. (2 puntos)
 - a) (1 punto) Sea "m" una constante real. Determine la posición relativa de los planos siguientes, según los valores de "m":

$$\pi : mx - 6y + 2z = 2$$
 $\pi' : \begin{cases} x = \lambda + \mu \\ y = 1 - \lambda \\ z = 2 - 2\lambda + \mu \end{cases}$

b) (1 punto) Determine el ángulo que forman las rectas:

$$r: \begin{cases} x & +z=1 \\ y & =0 \end{cases}$$
 $s: \begin{cases} 2x - 4y - 2z = 0 \\ x + y + 3z = -1 \end{cases}$

SOLUCIÓN

a) Los dos planos pueden ser secantes, paralelos o coincidentes.

El vector $\vec{n} = (m, -6, 2)$ es normal al plano π .

Los vectores
$$\vec{u} = (1, -1, -2)$$
 y $\vec{v} = (1, 0, 1)$ están en el plano $\pi' \Rightarrow \vec{n'} = \vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & -2 \\ 1 & 0 & 1 \end{vmatrix} = -\vec{i} - 2\vec{j} + \vec{k} - \vec{j} = \vec{k} - \vec{k} - \vec{k} - \vec{j} = \vec{k} - \vec$

 $=-\vec{i}-3\vec{j}+\vec{k}=(-1,-3,1)$ es normal al plano π' .

- Si m=-2: las coordenadas de \vec{n} y $\vec{n'}$ son proporcionales $\frac{-2}{-1} = \frac{-6}{-3} = \frac{2}{1} \implies \vec{n} || \vec{n'} \implies$ los planos son paralelos o coincidentes. Como $P(0,1,2) \in \pi'$ y $P(0,1,2) \notin \pi$ pues $-2 \cdot 0 6 \cdot 1 + 2 \cdot 2 = -2 \neq 2$ hay que descartar que los planos coincidan y, por tanto, son paralelos.
- Si $m \neq -2$: los planos son secantes pues \vec{n} y \vec{n} tienen distintas direcciones.
- b) Las rectas están expresadas como intersección de dos planos. Necesitamos obtener un vector direccional de cada una de las rectas para lo que buscaremos dos puntos de cada una y con ellos su vector direccional:

$$\begin{cases} x & +z=1 \\ y & =0 \end{cases} \Rightarrow \begin{cases} \text{Para } z=0 \colon \ x=1 \ , \ y=0 \ \Rightarrow \ A(1,0,0) \\ \text{Para } z=1 \colon \ x=0 \ , \ y=0 \ \Rightarrow \ B(0,0,1) \end{cases} \Rightarrow \vec{u} = \overrightarrow{AB} = \begin{pmatrix} -1 \ , 0 \ , 1 \end{pmatrix}$$

$$\begin{cases} 2x-4y=2z \\ x+y=-1-3z \end{cases} \Rightarrow \begin{cases} 2x-4y=2z \\ 4x+4y=-4-12z \end{cases} \Rightarrow 6x=-4-10z \Rightarrow x=\frac{-2-5z}{3} \Rightarrow$$

$$\Rightarrow \begin{vmatrix} \text{Para } z=-1 \colon \ x=1 \ , \ y=1 \ \Rightarrow \ P(1,1,-1) \\ \text{Para } z=2 \colon \ x=-4 \ , \ y=-3 \ \Rightarrow \ Q(-4,-3,2) \end{cases} \Rightarrow \vec{v} = \overrightarrow{PQ} = \begin{pmatrix} -5 \ , -4 \ , 3 \end{pmatrix}$$

Se tiene: $\cos \alpha = \frac{\left| \vec{u} \cdot \vec{v} \right|}{\left| \vec{u} \right| \left| \vec{v} \right|} = \frac{\left| 5+3 \right|}{\sqrt{1+0+1} \sqrt{25+16+9}} = \frac{8}{\sqrt{100}} = \frac{4}{5} = 0.8 \implies \alpha = 36^{\circ} 52' 11.63''$

- 3. (4 puntos)
 - **a)** (2 puntos) Encuentre dos números tales que el doble del primero más el triple del segundo sea 24 y su producto sea máximo.
 - b) (2 puntos) Determine:

$$\lim_{x \to 0} \left(\frac{x+1}{1+\sin(x)} \right)^{\frac{1}{x^2}}$$

SOLUCIÓN

a) Sean x e y los números buscados. Debe cumplirse: $2x + 3y = 24 \implies y = \frac{24 - 2x}{2} = 8 - \frac{2}{3}x$

La función $f(x) = x \left(8 - \frac{2}{3}x\right) = 8x - \frac{2}{3}x^2$ debe ser máxima.

$$f'(x) = 8 - \frac{4}{3}x = 0 \implies 24 = 4x \implies x = 6$$

 $f'(x) = 8 - \frac{4}{3}x = 0 \implies 24 = 4x \implies x = 6$ y como $f''(x) = -\frac{4}{3} < 0 \implies x = 6$ hace máxima la función.

Por lo tanto, los dos números son: 6 y 4.

b)
$$\lim_{x\to 0} \left(\frac{x+1}{1+\text{sen}x} \right)^{\frac{1}{x^2}} = 1^{\infty} = e^{\lim_{x\to 0} \left(\frac{x+1}{1+\text{sen}x} - 1 \right) \cdot \frac{1}{x^2}} = (1)$$

Calculemos el límite del exponente:

$$\underset{x\rightarrow 0}{\text{lim}}\left(\frac{x+1-1-\text{senx}}{1+\text{senx}}\right)\cdot\frac{1}{x^{2}} = \underset{x\rightarrow 0}{\text{lim}}\left(\frac{x-\text{senx}}{x^{2}\left(1+\text{senx}\right)}\right) = \frac{0}{0} \overset{\text{L'H}}{=} \underset{x\rightarrow 0}{\text{lim}}\left(\frac{1-\text{cos}x}{2x\left(1+\text{senx}\right)+x^{2}\cos x}\right) = \frac{0}{0} \overset{\text{L'H}}{=}$$

$$= \lim_{x \to 0} \left(\frac{\text{senx}}{2\left(1 + \text{senx}\right) + 2x\cos x + 2x\cos x - x^2 \text{ senx}} \right) = \lim_{x \to 0} \left(\frac{\text{senx}}{2\left(1 + \text{senx}\right) + 4x\cos x - x^2 \text{ senx}} \right) = \frac{0}{2} = 0$$

Y, por tanto: $(1) = e^0 = 1$

- 4. (1 punto) En una urna hay 10 bolas blancas y 3 negras. Se extrae una bola al azar y, sin verla ni reemplazarla, se extrae una segunda bola.
 - a) (0,5 puntos) ¿Cuál es la probabilidad de que la segunda bola extraída sea negra?
 - b) (0.5 puntos) Sabiendo que la segunda bola ha sido negra, calcule la probabilidad de que la primera bola extraída fuera negra también.

SOLUCIÓN

Sea B₁ el suceso "la primera bola extraída es blanca", N₁ el suceso "la primera bola extraída es negra", B₂ "la segunda bola extraída es blanca" y N₂ "la segunda bola extraída es negra"

a) Es una aplicación del teorema de la probabilidad total:

$$p(N_2) = p(B_1) \cdot p(N_2/B_1) + p(N_1) \cdot p(N_2/N_1) = \frac{10}{13} \cdot \frac{3}{12} + \frac{3}{13} \cdot \frac{2}{12} = \frac{36}{156} = \frac{3}{13} \approx 0,23$$

b) Es una aplicación del teorema de Bayes: $p(N_1 / N_2) = \frac{p(N_1 \cap N_2)}{p(N_2)} = \frac{p(N_1) \cdot p(N_2 / N_1)}{p(N_2)} = \frac{\frac{3}{13} \cdot \frac{2}{12}}{\frac{3}{12}} = \frac{2}{12} = \frac{1}{6} \approx 0,17$