SI ENCUENTRAS ALGÚN ERROR COMUNÍCALO, POR FAVOR, AL CORREO DE LA PÁGINA WEB.

SELECTIVIDAD FÍSICA. SEPTIEMBRE 2017. U.I.B.

OPCIÓN A.

1. Datos para este ejercicio: masa de la Tierra $M_T = 5.97 \times 10^{24}$ kg, radio de la Tierra $R_T = 6370$ km, masa del Sol $M_S = 1.99 \times 10^{30}$ kg y radio medio de la órbita de la Tierra alrededor del Sol $R_{ST} = 1.50 \times 10^8$ km.

- a) Considerando exclusivamente el campo gravitatorio terrestre, ¿cuál es la velocidad de escape desde la superficie de la Tierra?
- b) Un cuerpo ha alcanzado la velocidad anterior mientras se encuentra a una distancia del Sol igual al radio de la órbita de la Tierra. ¿Tiene este cuerpo la energía suficiente para escapar del campo gravitatorio solar? Razone la respuesta.

VER VÍDEO https://youtu.be/6C-YB8sw51o

a.
$$\frac{1}{2}mv_e^2 - G\frac{Mm}{d} = 0 \rightarrow v_e = \sqrt{\frac{2GM}{R}} = 11,2 \text{ Km/s}.$$

b. Calculamos la velocidad de escape respecto del sol.

$$v_e = \sqrt{\frac{2GM_{sol}}{d_{sol}}} = 42.1 \text{ Km/s}.$$

No tiene suficiente energía para escapar del campo gravitatorio solar.

- ${f 2}$. Una carga ${f Q}$ positiva se mueve en una región donde hay un campo eléctrico uniforme ${f E}$.
- a) ¿Cómo varía la energía potencial de Q si se desplaza en la misma dirección y el mismo sentido del campo eléctrico?
- b) ¿Cómo varía la energía potencial de Q si se desplaza en una dirección perpendicular al campo E?

VER VÍDEO https://youtu.be/1zvHihu9_go

a. $\Delta U = -qEd$, si q > 0 tenemos una disminución de energía potencial.

b. En este caso el campo no realiza ningún trabajo y la energía potencial no varía.

- 3. Un cable conductor muy largo, situado sobre el eje OZ, transporta un corriente de 20,0 A en el sentido positivo del eje. Un segundo cable también muy largo es paralelo al eje OZ y pasa por x = 10,0 cm.
- a. Determinar la intensidad de la corriente en el segundo cable sabiendo que el campo magnético es cero a $x=4.0\,\mathrm{cm}$.
- b. ¿Qué fuerza por unidad de longitud actúa sobre cada cable? Dibuja un esquema para indicar la dirección y el sentido de las fuerzas. (Permeabilidad magnética del vacio $\mu_0 = 4\pi \times 10^{-7} \text{ N/A}^2$) VER VÍDEO https://youtu.be/cj7hEyBJBhE
- a. El campo se anula en un punto situado a 4 cm. del primer hilo y a 6 cm. del segundo. La intensidad del segundo hilo debe ser del mismo sentido que la del primero, pues el campo se anula entre ellos (regla de la mano derecha.)

$$\begin{aligned} |\overrightarrow{B_1}| - |\overrightarrow{B_2}| &= 0 \to 2 \cdot 10^{-7} \cdot \frac{20}{0,04} = 2 \cdot 10^{-7} \cdot \frac{I_2}{0,06} \to I_2 = 30A. \\ b. \\ \overrightarrow{I_1} &= 2 \cdot 10^{-7} \cdot \frac{I_1 I_2}{d} = 1,2 \cdot 10^{-3} \text{ N/m}. \end{aligned}$$

- **4.** Cuando un rayo de luz incide sobre una superficie plana que separa dos medios, parte de la luz se refleja y parte se refracta. Si el ángulo de reflexión es de 28° , el de refracción es de 35° y el índice de refracción del primer medio vale $n_1 = 1,30$, determine:
 - a. El índice de refracción del segundo medio.
 - b. El ángulo de incidencia para el cual se produce reflexión total.

VER VIDEO https://voutu.be/HZ2MYGgT8GE

- a. El ángulo de reflexión es el mismo que el de incidencia: 28° Aplicando la ley de Snell: n_1 ·sen $i=n_2$ ·sen $r\to n_2=1,06$ b. Ángulo límite = L= arcsen $n_2/n_1=55°$
- 5. a) Calcule la actividad de una muestra de 5,0 mg de un nucleido que tiene una constante radiactiva $\lambda = 3,0 \times 10 9 \text{ s-1}$ y masa atómica de 200 u. (1 u = 1,66×10-27 kg, NA = 6,022×1023 mol-1)
- b) ¿Cuántos años deberán transcurrir para que la actividad de esta muestra sea un $60\,\%$ de la inicial?

VER VÍDEO https://youtu.be/ EAhsIroP1M

$$5 \mu g \cdot \frac{1 \text{ g.}}{1000 \text{ μg.}} \cdot \frac{1 \text{ u.m. a.}}{1,66 \cdot 10^{-24} \text{g}} \frac{1 \text{ átomo.}}{200 \text{ u.m. a.}} = 1,51 \cdot 10^{19} \text{ núcleos.}$$

$$A = \lambda.N = 3 \cdot 10^{-9} \cdot 1,51 \cdot 10^{19} = 4,52 \cdot 10^{10} \text{ Bq}.$$

$$A = A_0 e^{-\lambda.t} \rightarrow \lambda.t = \ln \frac{A_0}{\Delta} \rightarrow t = \frac{\ln \frac{A_0}{0.6 \cdot A_0}}{3 \cdot 10^{-9}} = 170275207 \text{ s.} = 5,4 \text{ años}$$

OPCIÓN B.

1. Una sonda espacial de masa m = 1200 kg se ha situado en una órbita circular de radio r = 6000 km alrededor de un planeta. Si la energía cinética de la sonda es Ec = 5.4×10^9 J, calcule:

- a) El período orbital de la sonda.
- b) La masa del planeta.

VER VÍDEO https://youtu.be/6ug4eJ5UwDg

$$\begin{split} T &= \frac{2\pi d}{v} = \frac{2\pi d}{\sqrt{\frac{2E_c}{m}}} = 3,5 \text{ h.} \\ b. \\ E_c &= \frac{1}{2}mv^2 = \frac{1}{2}m\frac{GM}{d} \to M = \frac{2dE_c}{Gm} = 8,1 \cdot 10^{23} \text{Kg.} \end{split}$$

- **2**. Un haz de electrones de energía cinética 5,0 keV atraviesa sin desviarse una zona en la que hay un campo eléctrico E y un campo magnético B; ambos campos son uniformes, perpendiculares entre si y al haz de electrones. Si el módulo del campo magnético vale $B = 2,3 \times 10^{-3}$ T, determinar:
 - a. La velocidad de los electrones.
 - b. El valor del campo eléctrico. (Masa del electrón $m_e = 9.11 \times 10^{-31} \text{ kg} = 0.511 \text{ MeV/c}^2$)

VER VÍDEO https://youtu.be/lnXXH4elsL4

a.
$$E_c = \frac{1}{2} m v^2 \rightarrow v = \sqrt{\frac{2E_c}{m}} = 4.2 \cdot 10^7 \text{ m/s}.$$

b. Si el haz no se desvía es porque las fuerzas eléctrica y magnética se

$$\left|\overrightarrow{F_{m}}\right| = \overrightarrow{|F_{e}|} \rightarrow qvB = Eq \rightarrow E = 9.7 \cdot 10^{4} \, N/m.$$

- f 3. Una explosión libera 10^7 J de energía en 1 segundo; el $50\,\%$ de esta energía se convierte en ondas sonoras.
- a. Si el sonido se propaga formando frentes de onda esféricos, ¿cuál es la intensidad de la onda a 110 m del foco de la explosión
- b. ¿Cuál es el nivel acústico del ruido a dicha distancia? (Intensidad umbral de audición $I_0=10^{-12}~W/m^2$)

VER VÍDEO https://youtu.be/sz96CpG14D8

a.
$$50\%$$
 de $10^7 = 5 \cdot 10^6$ J/s.

$$I = \frac{P}{\sup} = \frac{E \cdot t}{4 \cdot \pi \cdot r^2} = 32,9 \text{ W/m}^2.$$
b.
$$S = 10 \cdot \log \frac{I}{I_0} = 135 \text{ dB}.$$

- 4. Una lente convergente forma una imagen de tamaño doble que un objecto real. Si la imagen queda 60 cm. más allá de la lente, calcula:
 - a. La distancia del objeto a la lente.
 - b. La distancia focal de la lente.

VER VÍDEO https://youtu.be/dBgHZj PBLo

Al formararse la imagen mas alla de la lente es real e invertida.
$$\frac{y'}{y} = \frac{s'}{s} = -2$$

$$s' = 60 \text{ cm.}$$

$$\frac{s'}{s} = -2$$

$$\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'}$$

$$\frac{60}{s} = -2$$

$$\frac{1}{s} - \frac{1}{s} = \frac{1}{f'}$$

$$\frac{1}{60} - \frac{1}{s} = \frac{1}{f'}$$

$$\begin{cases} s = -30 \text{ cm.} \\ f' = 20 \text{ cm.} \end{cases}$$

- $\bf 5$. Un núcleo de $^{118}_{49} In$ absorbe un neutrón y se transforma en el isótopo $^{119}_{50} Sn$ y partículas adicionales.
 - a. Indique cuáles son las partículas adicionales.
 - b. Escriba la reacción ajustada.

VER VÍDEO https://youtu.be/0walh5oxqH4

$$^{118}_{~49}\text{In} + ^{1}_{0}\text{n} \rightarrow ^{119}_{~50}\text{Sn} + ^{0}_{-1}\text{e}^{-} + \overline{\nu}_{e} \rightarrow \begin{cases} \text{n: neutr\'on.} \\ \text{e}^{-}\text{: electr\'on.} \\ \overline{\nu}_{e}\text{: antineutrino.} \end{cases}$$