

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

BACHILLERATO QUÍMICA

Instrucciones:

- a) Duración: 1 hora y 30 minutos.
- **b**) Elija y desarrolle una opción completa, sin mezclar cuestiones de ambas. Indique, **claramente**, la opción elegida.
- c) No es necesario copiar la pregunta, basta con poner su número.
- d) Se podrá responder a las preguntas en el orden que desee.
- e) Puntuación: Cuestiones (nº 1,2,3 y 4) hasta 1'5 puntos cada una. Problemas (nº 5 y 6) hasta 2 puntos cada uno.
- f) Exprese sólo las ideas que se piden. Se valorará positivamente la concreción en las respuestas y la capacidad de síntesis.
- g) Se podrán utilizar calculadoras que no sean programables.

OPCIÓN A

- Formule o nombre los compuestos siguientes: a) Óxido de cromo (III) b) Nitrato de magnesio c) Ácido benzoico d) HgS e) H₃BO₃ f) CHCl₃
- **2.-** Cuatro elementos que llamaremos A, B, C y D tienen, respectivamente, los números atómicos: 2, 11, 17 y 25. Indique:
 - a) El grupo y el periodo al que pertenecen.
 - **b)** Cuáles son metales.
 - c) El elemento que tiene mayor afinidad electrónica.
- 3.- Dados los equilibrios: $3 F_2(g) + Cl_2(g)$ $2 ClF_3(g)$ $2 H_2(g) + Cl_2(g)$ 2 HCl(g) 2 NOCl(g) $2 NO(g) + Cl_2(g)$
 - a) Indique cuál de ellos no se afectará por un cambio de volumen, a temperatura constante.
 - b) ¿Cómo afectará a cada equilibrio un incremento en el número de moles de cloro?
 - c) ¿Cómo influirá en los equilibrios un aumento de presión en los mismos? Justifique las respuestas.
- **4.-** Dados los siguientes compuestos: $CH_3COOCH_2CH_3$, CH_3CONH_2 , $CH_3CHOHCH_3$ y $CH_3CHOHCOOH$
 - a) Identifique los grupos funcionales presentes en cada uno de ellos.
 - b) ¿Alguno posee átomos de carbono asimétrico? Razone su respuesta.
- **5.-** En 50 mL de una disolución acuosa de HCl 0'05 M se disuelven 1'5 g de NaCl. Suponiendo que no se altera el volumen de la disolución, calcule:
 - a) La concentración de cada uno de los iones.
 - **b**) El pH de la disolución.

Masas atómicas: Na = 23; Cl = 35'5.

- **6.-** El carbonato de sodio se puede obtener por descomposición térmica del bicarbonato de sodio, según la reacción: 2 NaHCO₃ ? Na₂CO₃ + CO₂ + H₂O Se descomponen 50 g de bicarbonato de sodio de un 98 % de riqueza en peso. Calcule:
 - a) El volumen de CO₂ desprendido, medido a 25°C y 1'2 atm.
 - **b)** La masa, en gramos, de carbonato de sodio que se obtiene.

Datos: R = 0'082 atm $L \cdot K^{-1} \cdot mol^{-1}$. Masas atómicas: Na = 23; H = 1; C = 12; O = 16.

OPCIÓN B

- 1.- Formule o nombre los compuestos siguientes: a) Dihidrogenofosfato de aluminio **b)** Cloruro de estaño (IV) c) 2-Propanol **d)** Cu(BrO₂)₂ **e)** SbH₃ **f)** CH₃OCH₃
- 2.- La fórmula empírica de un compuesto orgánico es C₂H₄O. Si su masa molecular es 88:
 - a) Determine su fórmula molecular.
 - b) Calcule el número de átomos de hidrógeno que hay en 5 g de dicho compuesto.

Masas atómicas: C = 12; O = 16; H = 1.

- **3.-** Razone la certeza o falsedad de las siguientes afirmaciones:
 - a) Todas las reacciones de combustión son procesos redox.
 - **b)** El agente oxidante es la especie que dona electrones en un proceso redox.
 - c) El ánodo, en una pila, es el electrodo en el que se lleva a cabo la oxidación.
- **4.-** De los ácidos débile s HNO₂ y HCN, el primero es más fuerte que el segundo.
 - a) Escriba sus reacciones de disociación en agua, especificando cuáles son sus bases conjugadas.
 - b) Indique, razonadamente, cuál de las dos bases conjugadas es la más fuerte.
- 5.- Calcule:
 - a) La variación de entalpía estándar para la descomposición de 1 mol de carbonato de calcio, CaCO₃(s), en dióxido de carbono, CO₂(g), y óxido de calcio, CaO(s).
 - **b)** La energía necesaria para preparar 3 kg de óxido de calcio.

Datos: $\Delta H_f^{\circ}(kJ/mol)$: $CO_2(g) = -393'5$; $CaCO_3(s) = -1206'2$; CaO(s) = -635'6.

Masas atómicas: Ca = 40: O = 16.

6.- El cloruro de amonio se descompone según la reacción:

$$NH_4Cl(s)$$
 \longrightarrow $NH_3(g) + HCl(g)$

En un recipiente de 5 litros, en el que previamente se ha hecho el vacío, se introducen 2'5 g de cloruro de amonio y se calientan a 300°C hasta que se alcanza el equilibrio. El valor de K_p a dicha temperatura es 1'2·10³. Calcule:

- a) La presión total de la mezcla en equilibrio.

b) La masa de cloruro de amonio sólido que queda en el recipiente. Datos: R = 0.082 atm·L·K⁻¹·mol⁻¹. Masas atómicas: H = 1; N = 14; Cl = 35.5.