

PRUEBA DE EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD Y PRUEBAS DE ADMISIÓN ANDALUCÍA, CEUTA, MELILLA y CENTROS en MARRUECOS CURSO 2022-2023

MATEMÁTICAS II

- Instrucciones: a) Duración: 1 hora y 30 minutos.
 - b) Este examen consta de 8 ejercicios distribuidos en 2 bloques (A y B) de 4 ejercicios cada uno.
 - c) Cada ejercicio tiene un valor máximo de 2,5 puntos.
 - d) Se realizarán únicamente cuatro ejercicios, independientemente del bloque al que pertenezcan. En caso de responder a más de cuatro ejercicios, se corregirán únicamente los cuatro que aparezcan físicamente en primer lugar.
 - e) Se permitirá el uso de calculadoras que no sean programables, ni gráficas ni con capacidad para almacenar o transmitir datos. No obstante, todos los procesos conducentes a la obtención de resultados deben estar suficientemente justificados.
 - f) En la puntuación máxima de cada ejercicio están contemplados 0,25 puntos para valorar la expresión correcta de los procesos y métodos utilizados.

BLOQUE A

EJERCICIO 1. (2,5 puntos)

Considera la función $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \frac{1}{e^x + e^{-x}}$.

- a) [1,5 puntos] Estudia y halla los máximos y mínimos absolutos de f (abscisas donde se obtienen y valores que se alcanzan).
- b) [1 punto] Calcula $\lim_{x \to +\infty} (x^2 f(x))$.

EJERCICIO 2. (2,5 puntos)

Sea la función $f: [-2,2] \longrightarrow \mathbb{R}$, definida por $f(x) = x^3 - 2x + 5$.

- a) [1,5 puntos] Determina las abscisas de los puntos, si existen, en los que la pendiente de la recta tangente coincide con la pendiente de la recta que pasa por los puntos (-2,f(-2)) y (2,f(2)).
- b) [1 punto] Determina la ecuación de la recta tangente y la ecuación de la recta normal a la gráfica de f en el punto de inflexión.

EJERCICIO 3. (2,5 puntos)

Considera la función $f \colon \mathbb{R} \to \mathbb{R}$, definida por f(x) = x|x-1|. Calcula el área del recinto limitado por la gráfica de dicha función y su recta tangente en el punto de abscisa x=0.

EJERCICIO 4. (2,5 puntos)

Considera la función $F: \mathbb{R} \to \mathbb{R}$ definida por $F(x) = \int_0^x \sin\left(t^2\right) dt$. Calcula $\lim_{x \to 0} \frac{xF(x)}{\sin(x^2)}$

PRUEBA DE EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD Y PRUEBAS DE ADMISIÓN ANDALUCÍA, CEUTA, MELILLA Y CENTROS en MARRUECOS CURSO 2022-2023

MATEMÁTICAS II

BLOQUE B

EJERCICIO 5. (2,5 puntos)

Una marca de vehículos ha vendido este mes coches de tres colores: blancos, negros y rojos. El $60\,\%$ de los coches blancos más el $50\,\%$ de los coches negros representan el $30\,\%$ de los coches vendidos. El $20\,\%$ de los coches blancos junto con el $60\,\%$ de los coches negros y el $60\,\%$ de los coches rojos representan la mitad de los coches vendidos. Se han vendido 100 coches negros más que blancos. Determina el número de coches vendidos de cada color.

EJERCICIO 6. (2,5 puntos)

Considera las matrices
$$A = \left(\begin{array}{ccc} 0 & 0 & m \\ m & 0 & 0 \\ 0 & m & 0 \end{array} \right) \quad \text{y} \quad B = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right).$$

- a) [0,5 puntos] Determina para qué valores de m existe la inversa de la matriz A.
- b) [2 puntos] Para todo $m \neq -1$, resuelve, si es posible, la ecuación AX + X = B.

EJERCICIO 7. (2,5 puntos)

El plano perpendicular al segmento de extremos P(0,3,8) y Q(2,1,6) que pasa por su punto medio corta a los ejes coordenados en los puntos A,B y C. Halla el área del triángulo cuyos vértices son los puntos A,B y C.

EJERCICIO 8. (2,5 puntos)

Considera el punto A(-1,1,3) y la recta r determinada por los puntos B(2,1,1) y C(0,1,-1).

- a) [1,5 puntos] Halla la distancia del punto A a la recta r.
- b) [1 punto] Calcula el área del triángulo cuyos vértices son A, B y C.