1.	Usando factores de conversión,	convierte I	las	siguientes	cantidades	a las	unidades	del S	SI ,	dando	el
	resultado en notación científica. (1 pt.)									

Cantidad	Conversión de unidades al SI en notación científica
$456\frac{g}{\mu L}$	
$50\frac{cm^3}{ns}$	

2. Completa la siguiente tabla (0,1 cada casilla, en total 1 pt.): [$_$ de 10]

Fórmula	Nomenclatura estequiométrica (de hidrógeno)	Nomenclatura de Stock	Nomenclatura tradicional
CO ₂			
MgO			
	Sulfuro de dihidrógeno		
Be(OH) ₂			
H ₂ SO ₂			

Indica el tipo de enlace químico que se da en los siguientes compuestos justificando tu respuesta y elabora la estructura de Lewis para los compuestos en los que sea posible. Indica el estado en el que se encuentran y si son conductores o no de la electricidad. (2 pt.)

Fórmula	Estructura de Lewis	Tipo de enlace ¿Por qué?	Estado de agregación	¿Es conductor de la electricidad?
KCI				
H ₂ SO ₂				
H₂Se				
O ₂				

4.	Escribe todos los posibles números cuánticos para un electrón situado en el subnivel 5d . (1 pt.)
	Indica si son verdaderas o falsas las siguientes afirmaciones justificando tu respuesta . Los compuestos iónicos se forman entre un metal que cede electrones a un no metal que lo	(2 pt.) os toma .
b) l	Los compuestos covalentes se forman entre un metal y un no metal que intercambian elec t	rones.
c) l	Los metales son elementos que conducen la corriente eléctrica .	
d) l	∟as sustancias que forman enlaces metálicos no son conductoras de calor .	
6.	Una posible reacción del carbonato de calcio con el ácido nítrico es la siguiente: $CaCO_3 \ (\) + HNO_3 \ (\) \rightarrow Ca(NO_3)_2 \ (\) + CO_2 \ (\) + H_2O \ (\)$	
Rea	accionan 50 g de carbonato de calcio con 200 mL de ácido nítrico 0,1 M .	
a)	Ajusta la reacción e indica el posible estado en el que se encuentran las sustancias ci	tadas en la
rea	cción anterior atendiendo al tipo de enlace que poseen (escribe dentro de los paréntesis).	(0,5 pt.)
b) (¿Qué reactivo quedará en exceso y en qué cantidad ?	(1 pt.)
c) (Calcular los gramos de Ca(NO₃) ₂ que se obtienen.	(0,75 pt.)
d) (Calcula el volumen que se formará de CO ₂ , en litros, medidos a 1520 mmHg de presión	
y 0	°C de temperatura.	(0,75 pt.)
Dat	tos de las masas atómicas : $M(Ca) = 40u$; $M(C) = 12u$; $M(O) = 16u$; $M(H) = 1u$; $M(N) = 14u$	

1. Usando **factores de conversión**, convierte las siguientes cantidades a las **unidades del SI**, dando el resultado en **notación científica**. (1 pt.)

Cantidad	Conversión de unidades al SI en notación científica
$456\frac{g}{\mu L}$	$456 \frac{9}{\mu L} \cdot \frac{1 k 9}{10^3 9} \cdot \frac{10^6 \mu L}{1 L} \cdot \frac{10^3 L}{1 m^3} = 4,56 \cdot 10^8 \frac{k 9}{m^3}$
$50\frac{cm^3}{ns}$	$50 \frac{\text{cm}^3}{\text{ns}} \cdot \frac{10^9 \text{ns}}{1 \text{s}} \cdot \frac{1 \text{m}^3}{(10^2 \text{cm})^3} = \frac{50 \cdot 10^9 \text{m}^3}{10^6 \text{s}} = 5 \cdot 10^4 \frac{\text{m}^3}{\text{s}}$

2. Completa la siguiente tabla (0,1 cada casilla, en total 1 pt.): [__ de 10]

Fórmula	Nomenclatura estequiométrica (de hidrógeno)	Nomenclatura de Stock	Nomenclatura tradicional
CO ₂	Dióxido de carbono	Óxido de carbono (IV)	
MgO	Monóxido de magnesio	Óxido de magnesio	
HZS	Sulfuro de dihidrógeno		Naido sulfhídhico
Be(OH) ₂	Dihidróxido de benlio	Hidróxido de berilio	
H ₂ SO ₂	Dihidrogeno (dioxidosulfato)		Acida hiposulfurosa

Indica el tipo de enlace químico que se da en los siguientes compuestos justificando tu respuesta y elabora la estructura de Lewis para los compuestos en los que sea posible. Indica el estado en el que se encuentran y si son conductores o no de la electricidad. (2 pt.)

Fórmula	Estructura de Lewis	Tipo de enlace ¿Por qué?	Estado de agregación	¿Es conductor de la electricidad?
KCI	Kx d: KIQI	lónico Metal + No Metal	Sólido	No Si (en disolnció
H ₂ SO ₂	H-0-2-0-H*	Covalente No Metal + No Metal	Gaseoso	No
H₂Se	H-Se-H	Covalente No Metal + No Metal	Gaseoso	No
O ₂	0=0	Covalente No Metal + No Metal	Gaseoso	No

4. Escribe todos los posibles números cuánticos para un electrón situado en el subnivel 5d. (1 pt.)

$$M = 5 \qquad (5, 2, -2, \pm \frac{1}{2}) (5, 2, 1, \pm \frac{1}{2})$$

$$\begin{cases} 1 = 0, 1, 2, 3, 4 \\ 1 = 0, 4, 2, 3, 4 \\ 1 = 0, 4, 2, 4 \end{cases} (5, 2, -1, \pm \frac{1}{2}) (5, 2, 2, \pm \frac{1}{2})$$

$$\begin{cases} 1 = 0, 1, 2, 3, 4 \\ 1 = 0, 4, 2, 4, 2 \end{cases} (5, 2, 0, \pm \frac{1}{2})$$

$$\begin{cases} 1 = 0, 1, 2, 3, 4 \\ 1 = 0, 4, 2, 4, 2 \end{cases} (5, 2, 0, \pm \frac{1}{2})$$

- 5. Indica si son verdaderas o falsas las siguientes afirmaciones justificando tu respuesta. (2 pt.)
- a) Los compuestos iónicos se forman entre un metal que cede electrones a un no metal que los toma. Verda dero. El metal es un catión (cede e) y el no metal un acción

(capta e). Ambos elementos completan su última capa por la regla del octeto.

b) Los compuestos covalentes se forman entre un metal y un no metal que intercambian electrones.

Se forman enlaces covalentes entre un no metal y un no metal que comparten electrones.

c) Los metales son elementos que conducen la corriente eléctrica.

Si, porque los electrones están libres y forman un fluido o nube electrónica de gran movilidad

d) Las sustancias que forman enlaces metálicos no son conductoras de calor.

Los electrones libres del enlace metálico se mueven y chocan facilmente, transmitiendo calor.

6. Una posible reacción del carbonato de calcio con el ácido nítrico es la siguiente:

$$CaCO_3$$
 (5) + HNO₃ (4c) \rightarrow $Ca(NO_3)_2$ (5) + CO_2 (7) + H_2O (1)

Reaccionan 50 g de carbonato de calcio con 200 mL de ácido nítrico 0,1 M.

- a) **Ajusta** la reacción e indica el **posible estado** en el que se encuentran las sustancias citadas en la reacción anterior atendiendo al **tipo de enlace** que poseen (escribe dentro de los paréntesis). (0,5 pt.)
- b) ¿Qué **reactivo** quedará en **exceso** y en qué **cantidad**? (1 pt.)
- c) Calcular los **gramos** de **Ca(NO₃)**₂ que se obtienen. (0,75 pt.)
- d) Calcula el volumen que se formará de CO₂, en litros, medidos a 1520 mmHg de presión
 y 0°C de temperatura. (0,75 pt.)

Datos de las masas atómicas: M(Ca) = 40u; M(C) = 12u; M(O) = 16u; M(H) = 1u; M(N) = 14u

a)
$$CaCO_3(s) + 2 HNO_3(ac) \rightarrow Ca(NO_3)_2(s) + CO_7(g) + H_7O(l)$$

b) $M(Ca(O_3) = 40g + 12g + 3.16g = 100g$
mol mol mol

Tenemos 200 ml de HNO3 0,1 M (mol/l); $M = \frac{n_s}{VD} \Rightarrow n_s = M \cdot VD$

Si reaccionaran 50 g de sal:

El HNO3 es el reactivo limitante. El CaCO3 está en exceso.

Calarlamos el exceso de Ca Coz a partir de los 0,02 moles de HNO2 (limitante)

c) Calabamos la masa de Ca(NO3)2 a partir del HNO3.

$$R = 0.082 \frac{\text{atu} \cdot l}{\text{mol} \cdot K}$$

P = 1520 mmHg ·
$$\frac{1atm}{760 mmHg}$$
 = 2 atm

$$T = 0^{\circ}C + 273 = 273 K$$

Calculamos los moles de CO2 a partir del HNO3.

$$V = \frac{m \cdot R \cdot T}{P} = \frac{0.01 \text{ mol} \cdot 0.082 \frac{\text{atm} \cdot l}{\text{mol} \cdot K} \cdot 273K}{2 \text{ atm}} \simeq 0.112 l \text{ de } CO_2$$