# MATTER PROPERTIES EXAM NAME AND SURNAME:-----



- a) Matter.
- b) Inertia.

### **ANSWER:**

- a) MATTER: it is everything that has mass and occupies space.
- b) INERTIA: it is the resistance a body offers to changes to its state of rest or movement.

Dankerthy

2) A bar of soap is 12 cm tall, 6 cm wide and 10 cm long. It has a mass of 415 grams. What is the density of the bar of soap? 2 points

#### **SOLUTION:**

Let us calculate the volume first:

$$V = 12 \cdot 6 \cdot 10 = 720 \text{ cm}^3$$

Then, we are going to calculate the density which is the quantity we have been asked for:



$$d = \frac{m}{V}$$

$$d = \frac{415 \, g}{720 \, cm^3} = \frac{0,58 \, g/cm^3}{}$$

#### **SOLUTION:**



b) 19 34th log-m<sup>2</sup> into g/em<sup>2</sup>

c) I'lell kg/m² into g/cm²

a) 7.14 gasan' into agran-

d) 10,5 grow into agent

AND COLUMN TO SERVICE OF THE SERVICE

$$V = \frac{m}{d}$$

$$V = \frac{3.5 \, g}{0.875 \, g/mL} = \frac{4 \, mL}{4 \, mL}$$

4) If the density of 45 cm³ block of wood is 0,65 g/mL, calculate the wood's mass.

2 points

## **SOLUTION:**



 $m = d \cdot V$ 

$$m = 0.65 \frac{g}{mL} \cdot 45 \, mL = 29,25 \, g$$

5) By means of conversion factors, transform the following units:

2 points

ad liburge A (E

- a)  $7,14 \text{ g/cm}^3$  into kg/m<sup>3</sup>
- b) 19 300 kg/m<sup>3</sup> into g/cm<sup>3</sup>
- c) 1740 kg/m<sup>3</sup> into g/cm<sup>3</sup>
- d) 10,5 g/cm<sup>3</sup> into kg/m<sup>3</sup>

### **SOLUTION:**

a) 
$$7.14 \frac{g}{cm^3} \cdot \frac{1 \, kg}{1000 \, g} \cdot \frac{1000 \, 000 \, cm^3}{1 \, m^3} = 7 \, 140 \, kg/m^3$$

b) 
$$19300 \frac{kg}{m^3} \cdot \frac{1000 g}{1 kg} \cdot \frac{1m^3}{1000000 cm^3} = \frac{19,3 g/cm^3}{19,3 g/cm^3}$$

c) 
$$1740 \frac{kg}{m^3} \cdot \frac{1000 g}{1 kg} \cdot \frac{1000 000 cm^3}{1000 000 cm^3} = \frac{1,74 g/cm^3}{1,74 g/cm^3}$$

d) 
$$10.5 \frac{g}{cm^3} \cdot \frac{1 \, kg}{1000 \, g} \cdot \frac{1000000 \, cm^3}{1 \, m^3} = 10500 \, kg/m^3$$

6) Fill the following diagram with the corresponding names of the changes of state:

1 point

SOLUTION:



#### **ANSWER:**



Reverse sublimation/deposition