

Prueba de evaluación de Bachillerato para el acceso a la Universidad (EBAU)

Curso 2022-2023

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

- > Responde en el pliego del examen a **cuatro preguntas cualesquiera** de entre las ocho que se proponen. Todas las preguntas se calificarán con un máximo de **2.5 puntos**.
- ➤ Indica en el pliego del examen la **agrupación de preguntas que responderás**: agrupaciones de preguntas que sumen más de 10 puntos conllevarán la **anulación** de la(s) última(s) pregunta(s) seleccionada(s) y/o respondida(s).

Pregunta 1. Sean las matrices
$$A = \begin{pmatrix} 3 & 1 \\ -1 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} -m & -1 \\ 1+4m & 4+m \end{pmatrix}$, $C = \begin{pmatrix} x \\ y \end{pmatrix}$ y $D = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

- a) [1 punto] Si $\frac{1}{2} \cdot A^2 \cdot B \cdot C = D$, plantea un sistema de dos ecuaciones y dos incógnitas (representadas por x e y) en función del parámetro m.
- b) [1.5 puntos] ¿Para qué valores de m el sistema anterior tiene solución? En caso de existir solución, ¿es siempre única? Resuelve el sistema para m = -2.

Pregunta 2. Los medios utilizados para realizar la publicidad al lanzar un nuevo producto, así como los costes y la audiencia estimada por anuncio se muestran a continuación:

	TELEVISIÓN	RADIO
Audiencia por anuncio	100 000	18 000
Coste por anuncio	2 100 €	300 €

Para lograr un uso balanceado de los medios, los anuncios en radio deben ser al menos el 50% de los anuncios totales y los anuncios en televisión deben ser al menos el 10% de los anuncios totales. Por otro lado se tiene que el presupuesto total para anuncios se ha limitado a 24 000 €.

- a) [1.75 puntos] ¿Cuántos anuncios de cada tipo se pueden hacer? Plantea el problema y representa gráficamente el conjunto de soluciones. ¿Podrían hacerse 10 anuncios en televisión y 20 en radio?
- b) [0.75 puntos] Si el objetivo es maximizar la audiencia total, ¿cuántos anuncios de cada tipo se deben hacer? ¿Cuánta audiencia total habría en ese caso?

Pregunta 3. La producción diaria de una determinada empresa oscila entre 1 y 10 toneladas. El beneficio diario (f), en miles de euros, depende de la producción (x) y su relación puede expresarse como sigue:

$$f(x) = \begin{cases} 22 + a \cdot x & si & 1 \le x \le 3\\ 100 + 10 \cdot x + b \cdot x^2 & si & 3 < x \le 10 \end{cases}$$

- a) [0.75 puntos] Determina las constantes a y b si se sabe que los días en los que se producen 3 toneladas el beneficio es de 112 miles de euros y que la función f es continua en todo su dominio.
- b) [1.75 puntos] Considerando los valores de *a* y *b* obtenidos en el apartado anterior, estudia y representa gráficamente la función *f* en el intervalo [1, 10]. Si un día el beneficio ha sido de 100 miles de euros, ¿cuánto se ha producido ese día? ¿Cuál es el beneficio mínimo un día cualquiera? ¿Y el beneficio máximo?

Pregunta 4. Dada la función $f(x) = -x^2 + 4x$, se pide:

- a) [0.5 puntos] Encontrar la primitiva F de f verificando que F(1) = 2.
- b) [2 puntos] Estudiar y representar gráficamente la función f en todo su dominio. Calcular el área limitada por la curva f y el eje X entre x = -1 y x = 3.

Pregunta 5. Según cierto estudio, se sabe que el 80% de los hogares de un determinado país tiene contratado el acceso a internet y que el 40% tiene contratado algún canal de televisión de pago. Además, se sabe que el 25% de los hogares disponen de ambos servicios. Si se selecciona un hogar al azar:

- a) [1.25 puntos] ¿Cuál es la probabilidad de que tenga contratada televisión de pago, pero no internet?
- b) [1.25 puntos] ¿Cuál es la probabilidad de que no tenga contratado ninguno de los dos servicios?

Pregunta 6. En una determinada población, el 5% de los individuos han contraído un virus. Para estudiar dicha enfermedad se somete a los individuos a un cribado consistente en una prueba que determina que tiene virus el 90% de las veces si el individuo está infectado y determina que no tiene virus el 95% de las veces si no está infectado. Se pide:

- a) [1.25 puntos] Si la prueba determina que un individuo tiene el virus, ¿cuál es la probabilidad de que realmente no lo tenga?
- b) [1.25 puntos] Si la prueba determina que un individuo no tiene el virus, ¿cuál es la probabilidad de que realmente lo tenga?

Pregunta 7. Se supone que la duración de un aparato electrónico, en años, sigue aproximadamente una distribución normal con desviación típica 0.5 años.*

- a) [1.5 puntos] Para estimar la duración media, se considera una muestra aleatoria de 150 aparatos, los cuales han durado, en media, 1.8 años. Construye, a partir de estos datos, un intervalo de confianza para la duración media, al 95% de confianza.
- b) [1 punto] ¿Cuál es el tamaño muestral mínimo necesario para estimar la verdadera duración media a partir de la media muestral con un error de estimación máximo de 0.2 años y un nivel de confianza del 99%?

Pregunta 8. Una empresa hace un estudio de mercado antes de lanzar un nuevo producto. Para ello selecciona al azar a 200 personas a las que proporciona su producto durante 4 semanas para que indiquen al final de ese periodo si les ha gustado o no. A 150 de ellas les ha gustado y al resto no.*

- a) [1.5 puntos] Construye, a partir de estos datos, un intervalo de confianza para la proporción poblacional de personas a las que les gustará el producto, al 99% de confianza.
- b) [1 punto] En el intervalo anterior, ¿cuánto vale el error de estimación? ¿Qué le ocurriría al error de estimación si, manteniendo el mismo nivel de confianza y la misma proporción muestral, hubiese disminuido el tamaño de la muestra?

^{*}Algunos valores de la función de distribución de la distribución normal de media 0 y desviación típica 1: F(1,28) = 0,90; F(1,64) = 0,95; F(1,96) = 0,975; F(2,33) = 0,99 y F(2,58) = 0,995.

SOLUCIONES:

Pregunta 1. Sean las matrices
$$A = \begin{pmatrix} 3 & 1 \\ -1 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} -m & -1 \\ 1+4m & 4+m \end{pmatrix}$, $C = \begin{pmatrix} x \\ y \end{pmatrix}$ y $D = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

- a) [1 punto] Si $\frac{1}{2} \cdot A^2 \cdot B \cdot C = D$, plantea un sistema de dos ecuaciones y dos incógnitas (representadas por $x \in y$) en función del parámetro m.
- b) [1.5 puntos] ¿Para qué valores de m el sistema anterior tiene solución? En caso de existir solución, ¿es siempre única? Resuelve el sistema para m = -2.

a)
$$A^{2} = \begin{pmatrix} 3 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 9-1 & 3-1 \\ -3+1 & -1+1 \end{pmatrix} = \begin{pmatrix} 8 & 2 \\ -2 & 0 \end{pmatrix}$$

$$A^{2} \cdot B = \begin{pmatrix} 8 & 2 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} -m & -1 \\ 1+4m & 4+m \end{pmatrix} = \begin{pmatrix} -8m+2+8m & -8+8+2m \\ 2m & 2 \end{pmatrix} = \begin{pmatrix} 2 & 2m \\ 2m & 2 \end{pmatrix}$$

$$\frac{1}{2} \cdot A^{2} \cdot B \cdot C = D \Rightarrow \frac{1}{2} \cdot \begin{pmatrix} 2 & 2m \\ 2m & 2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & m \\ m & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} x+my=1 \\ mx+y=1 \end{pmatrix}$$

b) Estudiamos la compatibilidad del sistema analizando el rango de la matriz de coeficientes A. Vemos cuando se anula el determinante de A.

$$A = \begin{pmatrix} 1 & m \\ m & 1 \end{pmatrix} \Rightarrow |A| = \begin{vmatrix} 1 & m \\ m & 1 \end{vmatrix} = 1 - m^2$$
$$|A| = 1 - m^2$$
$$|A| = 0 \Rightarrow 1 - m^2 = 0 \Rightarrow m^2 = 1 \Rightarrow m = \sqrt{1} = \pm 1$$

Analizamos las distintas situaciones que se plantean.

- Si m≠±1 el determinante de la matriz de coeficientes es no nulo y su rango es 2, al igual
 que el rango de la matriz ampliada y el número de incógnitas. El sistema tiene una única
 solución.
- Si m = 1 el determinante de la matriz de coeficientes es nulo y su rango es menor de 2. El sistema queda x + y = 1 . Al ser las dos ecuaciones iguales el sistema se reduce a una ecuación: x + y = 1. El sistema tiene infinitas soluciones.
- Si m = -1 el determinante de la matriz de coeficientes es nulo y su rango es menor de 2. El sistema queda x - y = 1 . Es tan sencillo que intentamos resolverlo.

$$\begin{vmatrix} x - y = 1 \\ -x + y = 1 \end{vmatrix} \Rightarrow \begin{vmatrix} x = 1 + y \\ -x + y = 1 \end{vmatrix} \Rightarrow -1 - y + y = 1 \Rightarrow -1 = 1 \Rightarrow \text{iMPOSIBLE!}$$

El sistema no tiene solución.

Respuestas: El sistema tiene solución cuando $m \neq -1$. La solución es única cuando $m \neq \pm 1$. Resolvemos el sistema para m = -2. Sabemos que tiene solución única.

$$\begin{vmatrix} x-2y=1 \\ -2x+y=1 \end{vmatrix} \Rightarrow \begin{vmatrix} x=1+2y \\ -2x+y=1 \end{vmatrix} \Rightarrow -2(1+2y)+y=1 \Rightarrow -2-4y+y=1 \Rightarrow -3y=3 \Rightarrow$$

$$\Rightarrow y = \frac{3}{-3} = -1 \Rightarrow x = 1 + 2(-1) = -1$$

La solución es x = -1, y = -1.

Pregunta 2. Los medios utilizados para realizar la publicidad al lanzar un nuevo producto, así como los costes y la audiencia estimada por anuncio se muestran a continuación:

	TELEVISIÓN	RADIO
Audiencia por anuncio	100 000	18 000
Coste por anuncio	2 100 €	300 €

Para lograr un uso balanceado de los medios, los anuncios en radio deben ser al menos el 50% de los anuncios totales y los anuncios en televisión deben ser al menos el 10% de los anuncios totales. Por otro lado se tiene que el presupuesto total para anuncios se ha limitado a 24 000 €.

- a) [1.75 puntos] ¿Cuántos anuncios de cada tipo se pueden hacer? Plantea el problema y representa gráficamente el conjunto de soluciones. ¿Podrían hacerse 10 anuncios en televisión y 20 en radio?
- b) [0.75 puntos] Si el objetivo es maximizar la audiencia total, ¿cuántos anuncios de cada tipo se deben hacer? ¿Cuánta audiencia total habría en ese caso?
 - a) Llamamos "x" a los anuncios por televisión e "y" a los anuncios por radio.

"Los anuncios en radio deben ser al menos el 50% de los anuncios totales" $\Rightarrow y \ge \frac{x+y}{2}$

"Los anuncios en televisión deben ser al menos el 10% de los anuncios totales" \Rightarrow $x \ge 0.10(x+y)$

"El presupuesto total para anuncios se ha limitado a 24 000 €." \Rightarrow 2100x + 300y ≤ 24000 Las cantidades deben ser positivas \Rightarrow $x \ge 0$; $y \ge 0$

Reunimos las restricciones en un sistema de inecuaciones.

$$\begin{vmatrix}
2100x + 300y \le 24000 \\
y \ge \frac{x+y}{2} \\
x \ge 0.10(x+y) \\
x \ge 0; \ y \ge 0
\end{vmatrix}
\Rightarrow
\begin{vmatrix}
7x + y \le 80 \\
2y \ge x + y \\
10x \ge x + y \\
x \ge 0; \ y \ge 0
\end{vmatrix}
\Rightarrow
\begin{vmatrix}
y \le 80 - 7x \\
9x \ge y \\
x \ge 0; \ y \ge 0
\end{vmatrix}$$

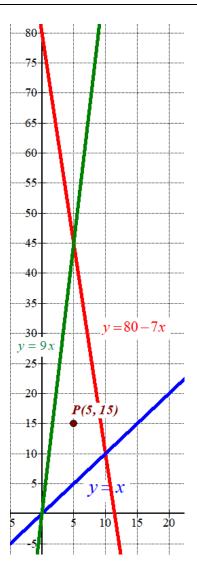
Dibujamos la región factible que es la región del plano que contiene los puntos que cumplen todas las restricciones.

Dibujamos las rectas asociadas a cada inecuación.

$$y = 80 - 7x$$
 $y = x$
 $y = 9x$
 $x \ge 0$; $y \ge 0$
 $x \mid y = 80 - 7x$
 $x \mid y = x$
 $x \mid y = 9x$
 Primer

 $0 \mid 80$
 $0 \mid 0$
 $0 \mid 0$
 cuadrante

 $10 \mid 10$
 $10 \mid 10$
 $10 \mid 90$



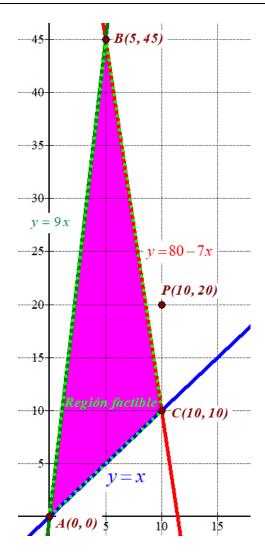
Como las restricciones son $\begin{cases} y \le 80 - 7x \\ y \ge x \\ 9x \ge y \\ x \ge 0; \ y \ge 0 \end{cases}$ la región que contiene las soluciones del sistema es la

región del primer cuadrante situada por debajo de las rectas roja y verde, y por encima de la recta azul.

Comprobamos que el punto P(5, 15) perteneciente a esta región cumple las restricciones:

$$\begin{vmatrix}
15 \le 80 - 7 \cdot 5 \\
15 \ge 5 \\
9 \cdot 5 \ge 15 \\
5 \ge 0; \ 15 \ge 0
\end{vmatrix}$$
; Se cumplen todas!

La coloreamos de rosa en el siguiente dibujo.



¿Podrían hacerse 10 anuncios en televisión y 20 en radio? El punto (10, 20) no pertenece a la región factible, por lo que no se pueden hacer 10 anuncios en televisión y 20 en radio ya que no cumplen algunas de las restricciones.

a) Deseamos maximizar la audiencia total que viene dada por la expresión: $f(x, y) = 100\,000x + 18\,000y$

Para encontrar la audiencia máxima valoramos la función en cada uno de sus vértices:

$$A(0,0) \rightarrow f(0,0) = 0$$

 $B(5,45) \rightarrow f(5,45) = 1000000 \cdot 5 + 18000 \cdot 45 = 1310000 \text{ ;Máximo!}$
 $C(10, 10) \rightarrow f(10,10) = 1000000 \cdot 10 + 18000 \cdot 10 = 1180000$

La máxima audiencia es de 1 310 000 personas y se obtiene en el vértice B(5, 45) lo que significa hacer 5 anuncios de televisión y 45 de radio.

Pregunta 3. La producción diaria de una determinada empresa oscila entre 1 y 10 toneladas. El beneficio diario (f), en miles de euros, depende de la producción (x) y su relación puede expresarse como sigue:

$$f(x) = \begin{cases} 22 + a \cdot x & si & 1 \le x \le 3\\ 100 + 10 \cdot x + b \cdot x^2 & si & 3 < x \le 10 \end{cases}$$

- a) [0.75 puntos] Determina las constantes a y b si se sabe que los días en los que se producen 3 toneladas el beneficio es de 112 miles de euros y que la función f es continua en todo su dominio.
- b) [1.75 puntos] Considerando los valores de *a* y *b* obtenidos en el apartado anterior, estudia y representa gráficamente la función *f* en el intervalo [1, 10]. Si un día el beneficio ha sido de 100 miles de euros, ¿cuánto se ha producido ese día? ¿Cuál es el beneficio mínimo un día cualquiera? ¿Y el beneficio máximo?
 - a) Si los días en los que se producen 3 toneladas el beneficio es de 112 miles de euros \rightarrow f(3)=112.

$$\begin{cases} f(3) = 22 + a \cdot 3 \\ f(3) = 112 \end{cases} \Rightarrow 22 + 3a = 112 \Rightarrow 3a = 90 \Rightarrow \boxed{a = \frac{90}{3} = 30}$$

La función queda
$$f(x) = \begin{cases} 22 + 30x & si & 1 \le x \le 3 \\ 100 + 10 \cdot x + b \cdot x^2 & si & 3 < x \le 10 \end{cases}$$

Si la función f es continua en todo su dominio debe ser continua en $x = 3 \Rightarrow f(3) = \lim_{x \to 3^+} f(x) = \lim_{x \to 3^-} f(x)$.

$$\begin{cases}
f(3) = 112 \\
\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} 100 + 10 \cdot x + b \cdot x^{2} = 100 + 30 + 9b = 130 + 9b \\
\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} 22 + 30 x = 112 \\
f(3) = \lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{-}} f(x)
\end{cases}$$

$$\Rightarrow 112 = 130 + 9b \Rightarrow$$

$$\Rightarrow -18 = 9b \Rightarrow \boxed{b = \frac{-18}{9} = -2}$$

Los valores buscados son a = 30 y b = -2.

b) La función con los valores de las constantes obtenidas en el apartado anterior queda:

$$f(x) = \begin{cases} 22 + 30x & si & 1 \le x \le 3\\ 100 + 10x - 2x^2 & si & 3 < x \le 10 \end{cases}$$

Su gráfica es un trozo de recta (entre 1 y 3) y un trozo de parábola (entre 3 y 10). Hallamos el vértice de la parábola.

$$\begin{cases}
f(x) = 100 + 10x - 2x^2 \implies f'(x) = 10 - 4x \\
f'(x) = 0
\end{cases} \implies 10 - 4x = 0 \implies 4x = 10 \implies x = \frac{10}{4} = 2.5 \notin (3, 10]$$

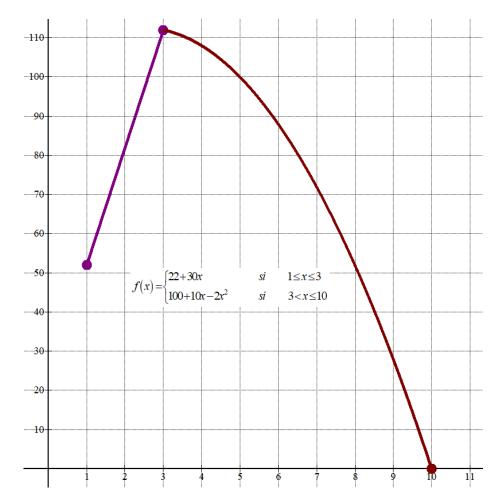
Hacemos una tabla de valores para cada trozo de gráfica y la representamos.

$$1 \le x \le 3 \to f(x) = 22 + 30x$$

$$1 \le x \le 3 \to f(x) = 22 + 30x$$
 $3 < x \le 10 \to f(x) = 100 + 10x - 2x^2$

х	y = 22 - 30x
1	52
2	82
3	112

х	$y = 100 + 10x - 2x^2$
4	108
5	100
6	88
8	52
10	0



Si un día el beneficio ha sido de 100 miles de euros, ¿cuánto se ha producido ese día? Mirando la gráfica para y = 100 hay dos posibilidades: Entre 2 y 3 toneladas y otra posibilidad es 5 toneladas.

Las obtenemos con más precisión.

$$f(x) = \begin{cases} 22 + 30x & \text{si } 1 \le x \le 3 \\ 100 + 10x - 2x^2 & \text{si } 3 < x \le 10 \end{cases} \Rightarrow y = 100$$

$$\Rightarrow \begin{cases} 22 + 30x = 100 \rightarrow 30x = 78 \Rightarrow \boxed{x = \frac{78}{30} = 2.6} \\ 100 + 10x - 2x^2 = 100 \rightarrow 10x - 2x^2 = 0 \rightarrow 2x(5 - x) = 0 \rightarrow \begin{cases} x = 0 \notin (3, 10] \\ \boxed{x = 5} \end{cases}$$

Se pueden obtener un beneficio de 100 000 € con una producción de 5 toneladas y con una de 2.6 toneladas.

¿Cuál es el beneficio mínimo un día cualquiera? ¿Y el beneficio máximo?

Observando la gráfica el beneficio máximo es de 112 000 € y el mínimo beneficio es de 0 €.

Pregunta 4. Dada la función $f(x) = -x^2 + 4x$, se pide:

- a) [0.5 puntos] Encontrar la primitiva F de f verificando que F(1) = 2.
- b) [2 puntos] Estudiar y representar gráficamente la función f en todo su dominio. Calcular el área limitada por la curva f y el eje X entre x = -1 y x = 3.

a)

$$F(x) = \int f(x) dx = \int -x^2 + 4x dx = \frac{-x^3}{3} + 2x^2 + K$$

Como debe ser F(1) = 2.

$$F(x) = \frac{-x^3}{3} + 2x^2 + K$$

$$F(1) = 2$$

$$\Rightarrow -\frac{1^3}{3} + 2 \cdot 1^2 + K = 2 \Rightarrow K = \frac{1}{3}$$

$$F(x) = \frac{-x^3}{3} + 2x^2 + \frac{1}{3}$$

b) La gráfica de la función es una parábola. Hallamos su vértice o mínimo relativo.

$$f(x) = -x^2 + 4x \Rightarrow f'(x) = -2x + 4$$

$$f'(x) = 0 \Longrightarrow -2x + 4 = 0 \Longrightarrow \boxed{x = 2}$$

En el intervalo $(-\infty, 2)$ tomamos x = 0 y la derivada vale f'(0) = 4 > 0. La función crece en $(-\infty, 2)$.

En el intervalo $(2, +\infty)$ tomamos x = 3 y la derivada vale f'(3) = -6 + 4 = -2 < 0. La función decrece en $(2, +\infty)$.

La función presenta un máximo relativo en x = 2.

Como $f(2) = -2^2 + 4 \cdot 2 = 4$ las coordenadas del máximo relativo son (2, 4).

Hacemos una tabla de valores.

$$x | y = -x^{2} + 4x$$

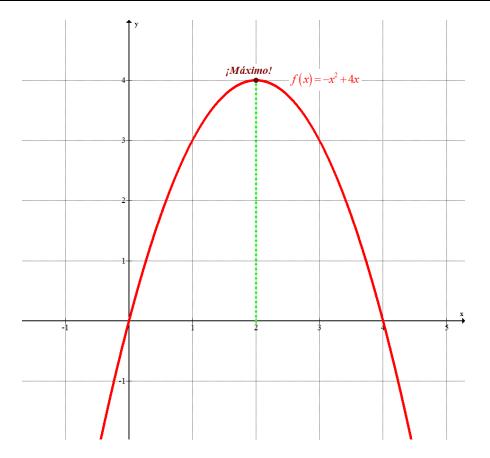
$$0 | 0$$

$$1 | 3$$

$$2 | 4 Vértice$$

$$3 | 3$$

$$4 | 0$$



Los puntos de corte con los ejes son x = 0, x = 4.

Como la función corta el eje X en x = 0 el área de la región limitada por la curva y el eje X entre x = -1 y x = 3 es la suma del valor absoluto de la integral definida de la función entre -1 y 0 y la integral definida de la función entre 0 y 3.

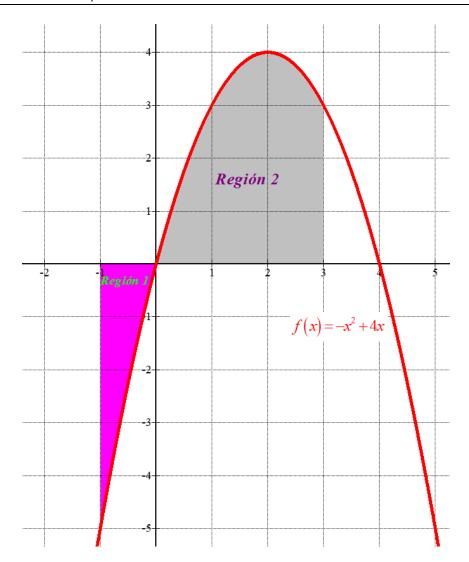
Área región
$$1 = \left| \int_{-1}^{0} -x^2 + 4x dx \right| = \left[\left[\frac{-x^3}{3} + 2x^2 \right]_{-1}^{0} \right] =$$

$$= \left[\left[\frac{-0^3}{3} + 2 \cdot 0^2 \right] - \left[\frac{-(-1)^3}{3} + 2(-1)^2 \right] \right] = \left| -\frac{1}{3} - 2 \right| = \left[\frac{7}{3} u^2 \right]$$

Área región
$$2 = \left| \int_{0}^{3} -x^{2} + 4x dx \right| = \left[\left[\frac{-x^{3}}{3} + 2x^{2} \right]_{0}^{3} \right] =$$

$$= \left[\left[\frac{-3^3}{3} + 2 \cdot 3^2 \right] - \left[\frac{-0^3}{3} + 2 \cdot 0^2 \right] \right] = \left| -9 + 18 \right| = \boxed{9 u^2}$$

El área total es la suma de las dos áreas calculadas: $\frac{7}{3} + 9 = \sqrt{\frac{34}{3}} \approx 11.33 u^2$



Pregunta 5. Según cierto estudio, se sabe que el 80% de los hogares de un determinado país tiene contratado el acceso a internet y que el 40% tiene contratado algún canal de televisión de pago. Además, se sabe que el 25% de los hogares disponen de ambos servicios. Si se selecciona un hogar al azar:

a) [1.25 puntos] ¿Cuál es la probabilidad de que tenga contratada televisión de pago, pero no internet?

b) [1.25 puntos] ¿Cuál es la probabilidad de que no tenga contratado ninguno de los dos servicios?

Llamamos I al suceso "Hogar con internet" y T a "Hogar con canal de televisión de pago. Realizamos una tabla de contingencia-

	Internet	Sin	
		internet	
Televisión de pago	25		40
Sin televisión de			
pago			
	80		100

Completamos la tabla.

	Internet	Sin	
		internet	
Televisión de pago	25	15	40
Sin televisión de	55	_	60
pago	55	3	
	80	20	100

Aplicando la regla de Laplace y con los datos que nos proporciona la tabla respondemos a las preguntas.

a)
$$P(T \cap I^c) = \frac{15}{100} = \boxed{0.15}$$

b)
$$P(T^{c} \cap I^{c}) = \frac{5}{100} = \boxed{0.05}$$

OTRA FORMA DE RESOLVERLO

Llamamos I al suceso "Hogar con internet" y T a "Hogar con canal de televisión de pago. Sabemos que P(I) = 0.8, P(T) = 0.4 y $P(I \cap T) = 0.25$.

$$P(T) = P(T \cap I) + P(T \cap I^{C}) \Rightarrow 0.4 = 0.25 + P(T \cap I^{C}) \Rightarrow$$

$$\Rightarrow P(T \cap I^{C}) = 0.4 - 0.25 = 0.15$$

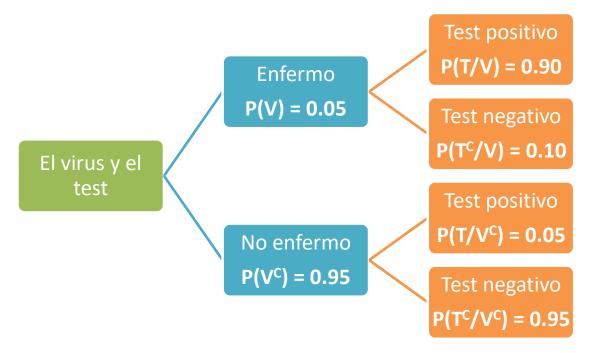
b)
$$P(\overline{T} \cap \overline{I}) = \{\text{Leyes de Morgan}\} = P(\overline{T \cup I}) = 1 - P(T \cup I) = 1 - [P(T) + P(I) - P(T \cap I)]$$

$$P(\overline{T} \cap \overline{I}) = 1 - [0.4 + 0.8 - 0.25] = 1 - 0.95 = 0.05$$

Pregunta 6. En una determinada población, el 5% de los individuos han contraído un virus. Para estudiar dicha enfermedad se somete a los individuos a un cribado consistente en una prueba que determina que tiene virus el 90% de las veces si el individuo está infectado y determina que no tiene virus el 95% de las veces si no está infectado. Se pide:

- a) [1.25 puntos] Si la prueba determina que un individuo tiene el virus, ¿cuál es la probabilidad de que realmente no lo tenga?
- b) [1.25 puntos] Si la prueba determina que un individuo no tiene el virus, ¿cuál es la probabilidad de que realmente lo tenga?

Llamamos V = "Ha contraído el virus", T = "Prueba da positivo" Realizamos un diagrama de árbol.



a) Nos piden calcular $P(V^C/T)$. Es una probabilidad a posteriori. Aplicamos el teorema de Bayes.

$$P(V^{C}/T) = \frac{P(V^{C} \cap T)}{P(T)} = \frac{P(V^{C})P(T/V^{C})}{P(V)P(T/V) + P(V^{C})P(T/V^{C})} = \frac{P(V^{C})P(T/V^{C})}{P(V)P(T/V^{C})} = \frac{P(V^{C})P(T/V^{C})}{P(V)P(T/V^{C})} = \frac{P(V^{C})P(T/V^{C})}{P(V)P(T/V^{C})} = \frac{P(V^{C})P(T/V^{C})}{P(V)P(T/V^{C})} = \frac{P(V^{C})P(T/V^{C})}{P(V)P(T/V^{C})} = \frac{P(V^{C})P(T/V^{C})}{P(V^{C})P(T/V^{C})} = \frac{P(V^{C})P(T/V^{C$$

$$= \frac{0.95 \cdot 0.05}{0.05 \cdot 0.90 + 0.95 \cdot 0.05} = \boxed{\frac{19}{37} \approx 0.5135}$$

b) Nos piden calcular $P(V/T^c)$. Es una probabilidad a posteriori. Aplicamos el teorema de Bayes.

$$P(V/T^{C}) = \frac{P(V \cap T^{C})}{P(T^{C})} = \frac{P(V)P(T^{C}/V)}{P(V)P(T^{C}/V) + P(V^{C})P(T^{C}/V^{C})} =$$

$$= \frac{0.05 \cdot 0.1}{0.05 \cdot 0.10 + 0.95 \cdot 0.95} = \boxed{\frac{2}{363} \approx 0.0055}$$

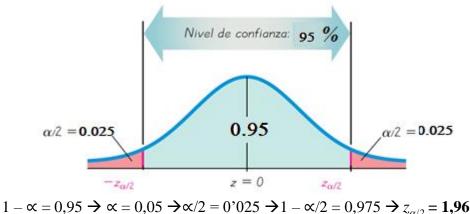
Pregunta 7. Se supone que la duración de un aparato electrónico, en años, sigue aproximadamente una distribución normal con desviación típica 0.5 años. *

- a) [1.5 puntos] Para estimar la duración media, se considera una muestra aleatoria de 150 aparatos, los cuales han durado, en media, 1.8 años. Construye, a partir de estos datos, un intervalo de confianza para la duración media, al 95% de confianza.
- b) [1 punto] ¿Cuál es el tamaño muestral mínimo necesario para estimar la verdadera duración media a partir de la media muestral con un error de estimación máximo de 0.2 años y un nivel de confianza del 99%?
 - a) X = duración de un aparato electrónico, en años.

$$X = N(\mu, 0.5).$$

Tamaño de la muestra = n = 150. Media muestral = x = 1.8 años.

Buscamos en la tabla de la normal para un nivel de confianza del 95% el $z_{\alpha/2}$.



$$1 - \alpha = 0.95 \rightarrow \alpha = 0.05 \rightarrow \alpha/2 = 0.025 \rightarrow 1 - \alpha/2 = 0.975 \rightarrow z_{\alpha/2} = 1.96$$

Algunos valores de la función de distribución de la distribución normal de media 0 y desviación típica 1: F(1,28) = 0.90; F(1,64) = 0.95; F(1,96) = 0.975; F(2,33) = 0.99 y F(2,58) = 0.995.

El error sigue la fórmula:

$$Error = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \Rightarrow Error = 1.96 \cdot \frac{0.5}{\sqrt{150}} = 0.08$$
 años

El intervalo de confianza para la media de la población es:

$$(\bar{x} - Error, \bar{x} + Error) = (1.8 - 0.08, 1.8 + 0.08) = (1.72, 1.88)$$

Es decir, tenemos una confianza del 95% de que la duración media está entre 1.72 y 1.88 años.

b) Buscamos en la tabla de la normal para un nivel de confianza del 99% el $z_{\alpha/2}$.

$$1 - \alpha = 0.99 \Rightarrow \alpha = 0.01 \Rightarrow \alpha/2 = 0.005 \Rightarrow 1 - \alpha/2 = 0.995 \Rightarrow z_{\alpha/2} = 2.58$$

* Algunos valores de la función de distribución de la distribución normal de media 0 y desviación típica 1: F(1,28) = 0.90; F(1,64) = 0.95; F(1,96) = 0.975; F(2,33) = 0.99 y F(2,58) = 0.995.

El error debe ser menor de 0.2. Utilizamos la fórmula del error para despejar n:

$$Error = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \Rightarrow 0.2 = 2.58 \cdot \frac{0.5}{\sqrt{n}} \Rightarrow 0.2\sqrt{n} = 2.58 \cdot 0.5 \Rightarrow$$

$$\Rightarrow \sqrt{n} = \frac{2.58 \cdot 0.5}{0.2} \Rightarrow n = \left(\frac{2.58 \cdot 0.5}{0.2}\right)^2 = 41.6025$$

El tamaño mínimo de la muestra es un número entero superior al obtenido. El tamaño mínimo de la muestra es de 42 aparatos.

Pregunta 8. Una empresa hace un estudio de mercado antes de lanzar un nuevo producto. Para ello selecciona al azar a 200 personas a las que proporciona su producto durante 4 semanas para que indiquen al final de ese periodo si les ha gustado o no. A 150 de ellas les ha gustado y al resto no.*

- a) [1.5 puntos] Construye, a partir de estos datos, un intervalo de confianza para la proporción poblacional de personas a las que les gustará el producto, al 99% de confianza.
- b) [1 punto] En el intervalo anterior, ¿cuánto vale el error de estimación? ¿Qué le ocurriría al error de estimación si, manteniendo el mismo nivel de confianza y la misma proporción muestral, hubiese disminuido el tamaño de la muestra?
 - a) Tamaño de la muestra = n = 200. Proporción muestral de las personas a las que les ha gustado el producto es: $p = \frac{150}{200} = 0.75$.

Buscamos en la tabla de la normal para un nivel de confianza del 99% el $z_{\alpha/2}$.

$$1 - \alpha = 0.99 \Rightarrow \alpha = 0.01 \Rightarrow \alpha/2 = 0.005 \Rightarrow 1 - \alpha/2 = 0.995 \Rightarrow z_{\alpha/2} = 2.58$$

Obtenemos el error.

$$Error = z_{\alpha/2} \cdot \sqrt{\frac{p \cdot (1-p)}{n}} = 2.58 \cdot \sqrt{\frac{0.75 \cdot 0.25}{200}} \approx 0.079$$

El intervalo de confianza será:

$$(p-Error, p+Error) = (0.75-0.079, 0.75+0.079) = (0.671, 0.829)$$

b) En el Intervalo de confianza anterior el error de la estimación es 0.079.

La fórmula del error es $Error = z_{\alpha/2} \cdot \sqrt{\frac{p \cdot \left(1-p\right)}{n}}$. Si mantenemos el valor de $z_{\alpha/2}$ y la

proporción muestral (p) y disminuimos el tamaño muestral (n) tendremos un error mayor (disminuye $n \rightarrow$ aumenta Error).

^{*} Algunos valores de la función de distribución de la distribución normal de media 0 y desviación típica 1: F(1,28) = 0.90; F(1,64) = 0.95; F(1,96) = 0.975; F(2,33) = 0.99 y F(2,58) = 0.995.