Teorema del resto:

RECORDAR:

TEOREMA DEL RESTO: "El resto de la división de P(x) por x-a coincide con el valor numérico P(a)"

Ejemplo: Al efectuar la división de $P(x)=x^2+x-2$ entre x-1 se obtiene resto cero, como cabía esperar, puesto que

Utilidad: El th. del resto permite predecir, sin necesidad de efectuar la división, si se trata de una división

Dado $P(x)=2x^2-x-3$, comprobar si es divisible por x+1 o por x-2 mediante el teorema del resto. Comprobar a continuación efectuando la división ¿Cuál es el otro factor por el que es divisible? (Soluc: Sí; NO; 2x-3)

Determinar, aplicando el teorema del resto, el valor de a para que el resto de la división x⁵+3x⁴+ax³+9x²+2x-7 k-3 sea -1; comprobar, a continuación, el resultado obtenido haciendo la división. (Soluc: a=-3)

Averiguar, sin efectuar la división, cuáles de las siguientes divisiones son exactas:

b)
$$x^3-x^2+x+14$$
 $x+2$ (Soluc: SÍ) **d)** x^5-3x^3+2x $x-4$ (Soluc: NO)

Hallar, de dos formas distintas, el valor de m en cada caso para que las siguientes divisiones sean exactas:

a)
$$x^3 + 8x^2 + 4x + m$$
 $x+4$ (Soluc: $m=-48$) **b)** $2x^3 - 10x^2 + mx + 25$ $x - 5$ (Soluc: $m=-5$

c)
$$2x^4 + mx^3 - 4x^2 + 40 | x-2 |$$
 (Soluc: $m=-7$) **f)** $x^3 - 5x^2 + m | x-1 |$ (Soluc: $m=4$)

exactas:

a)
$$x^3 + 8x^2 + 4x + m | x+4 |$$
b) $2x^3 - 10x^2 + mx + 25 | x | 5 |$
c) $2x^4 + mx^3 - 4x^2 + 40 | x-2 |$
d) $mx^2 - 3x - 744 | x-8 |$
e) $x^2 + 4x - m | x+3 |$

(Soluc: $m = -48$)

b) $2x^3 - 10x^2 + mx + 25 | x | 5 |$

(Soluc: $m = -5$)

f) $x^3 - 5x^2 + m | x-1 |$

(Soluc: $m = -424/3$)

e) $x^2 + 4x - m | x+3 |$

(Soluc: $m = -3$)

f) $x^3 - 5x^2 + m | x-1 |$

(Soluc: $m = -424/3$)

e) $x^2 + 4x - m | x+3 |$

(Soluc: $m = -3$)

h) $x^5 - 4x^3 + mx^2 - 10 | x+1 |$

(Soluc: $m = -7$)