

Evaluación de Bachillerato para el acceso a la Universidad

Castilla y León

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

EXAMEN

Nº Páginas: 2 (tabla adicional)

OPTATIVIDAD: CADA ESTUDIANTE DEBERÁ ESCOGER **TRES** PROBLEMAS Y **UNA** CUESTIÓN Y DESARROLLARLOS COMPLETOS.

CRITERIOS GENERALES DE EVALUACIÓN

Cada problema se puntuará sobre un máximo de 3 puntos. Cada cuestión se puntuará sobre un máximo de 1 punto. Salvo que se especifique lo contrario, los apartados que figuran en los distintos problemas son equipuntuables. La calificación final se obtiene sumando las puntuaciones de los tres problemas y la cuestión realizados. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos efectuados.

CALCULADORA: Podrán usarse calculadoras no programables, que no admitan memoria para texto ni para resolución de ecuaciones, ni para resolución de integrales, ni para representaciones gráficas.

Problemas (a elegir tres)

P1.

En una concentración deportiva, el médico indica que cada deportista debe tomar entre un mínimo de 110 mg y un máximo de 250 mg de vitamina C al día, y también entre 80 y 150 mg de magnesio. Los deportistas toman comprimidos de VITAMIN que contienen, cada uno, 40 mg de vitamina C y 10 mg de magnesio. Asimismo, ingieren comprimidos MAGNE con 10 mg de vitamina C y 20 mg de magnesio cada uno. Calcular, utilizando técnicas de programación lineal, el número de comprimidos de cada tipo que son necesarios si se desea tomar el menor número posible de comprimidos e ingerir la dosis necesaria de vitamina C y de magnesio.

P2.

Se considera el siguiente sistema de ecuaciones lineales dependiente del parámetro real k:

$$\begin{cases} x-3y+5z=0\\ ky+(5-k)z=-10\\ x-3y+kz=10 \end{cases}$$

- a) Clasificar el sistema según su número de soluciones para los distintos valores de k.
- b) Resolver el sistema para k = 1

P3.

Sea la función:
$$f(x) = \begin{cases} x^2 + x - 2 & \text{si } x \le 1 \\ a + \ln(x) & \text{si } x > 1 \end{cases}$$

- a) Determinar el valor de a para que f(x) sea continua en todo su dominio.
- b) Para a = 1, estudiar los puntos de corte con los ejes, monotonía y extremos relativos.

P4.

La temperatura (en grados centígrados) del agua del mar Mediterráneo ha cambiado con el tiempo según la función T(x), donde x representa los años transcurridos desde el inicio de 2010:

$$T(x) = \begin{cases} 22 + 5.5x - 1.5x^2 & \text{si } 0 \le x < 3\\ \frac{52x^2 + 3x + 23}{2x^2 + 2} & \text{si } x \ge 3 \end{cases}$$

- a) Estudiar si la temperatura del agua ha cambiado de forma continua a lo largo de los años.
- b) Hallar la temperatura del agua al inicio del año 2014 y razonar cuál se prevé que será la temperatura del agua dentro de muchos años.

P5.

El número de viajes realizados anualmente por habitantes de Castilla y León a comunidades limítrofes sigue una distribución normal cuya desviación típica es $\sigma = 10$. Si seleccionamos una muestra de 625 viajeros, la media de viajes realizados por los mismos es de 16.

- a) ¿Cuál es el intervalo de confianza para la media de viajes anuales en toda la población para un nivel de significación del 4 %?
- b) ¿Cuál sería el error máximo admisible si se hubiera utilizado una muestra de tamaño 500 y un nivel de confianza del 90 %?

P6.

En un instituto, 44 de cada 100 chicas y 5 de cada 10 chicos de segundo curso de Bachillerato están matriculados en la asignatura *Empresa y diseño de modelos de negocio*. Hay 150 chicas y 75 chicos en segundo curso de Bachillerato.

- a) Si se elige un estudiante al azar de segundo curso de Bachillerato, hallar la probabilidad de que no esté matriculado en *Empresa y diseño de modelos de negocio*.
- b) Sabiendo que el estudiante elegido está matriculado en *Empresa y diseño de modelos de negocio*, ¿cuál es la probabilidad de que sea chica?

CUESTIONES (A ELEGIR UNA)

C1.

Despejar la incógnita X en la ecuación matricial C(A+X) = B-2X.

C2.

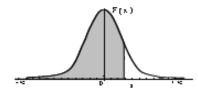
Calcular el área bajo la curva $f(x) = x^3 + 3x^2 - 2$ y el eje OX en el intervalo [-2,-1].

C3.

Se lanza tres veces una moneda no trucada. Calcular la probabilidad de que salgan al menos dos caras seguidas.

Distribución Normal

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^{2}} dt$$



	00,0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9014
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9318
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998
3,5	0,9997	0,9997	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998
3,6	8999, 0	0,9998	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
ш							-			

SOLUCIONES

P1.

En una concentración deportiva, el médico indica que cada deportista debe tomar entre un mínimo de 110 mg y un máximo de 250 mg de vitamina C al día, y también entre 80 y 150 mg de magnesio. Los deportistas toman comprimidos de VITAMIN que contienen, cada uno, 40 mg de vitamina C y 10 mg de magnesio. Asimismo, ingieren comprimidos MAGNE con 10 mg de vitamina C y 20 mg de magnesio cada uno. Calcular, utilizando técnicas de programación lineal, el número de comprimidos de cada tipo que son necesarios si se desea tomar el menor número posible de comprimidos e ingerir la dosis necesaria de vitamina C y de magnesio.

Llamamos x = número de comprimidos VITAMIN, y = número de comprimidos MAGNE.

La función objetivo que deseamos minimizar es el número total de comprimidos:

$$N(x, y) = x + y$$

Realizamos una tabla con los datos del problema.

	Vitamina C	Magnesio
Nº comprimidos VITAMIN (x)	40x	10x
N° comprimidos MAGNE (y)	10y	20y
TOTALES	40x + 10y	10x + 20y

Las restricciones son:

"Cada deportista debe tomar entre un mínimo de 110 mg y un máximo de 250 mg de vitamina C al día" \rightarrow 110 \leq 40x +10y \leq 250

"Cada deportista debe tomar entre 80 y 150 mg de magnesio" \rightarrow 80 \leq 10x + 20y \leq 150

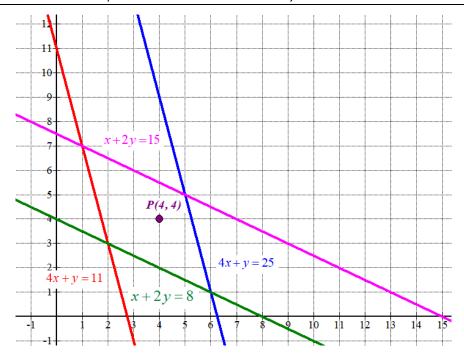
Las cantidades deben ser positivas $\rightarrow x \ge 0$; $y \ge 0$

Reunimos todas las restricciones en un sistema de inecuaciones:

$$\begin{cases}
 110 \le 40x + 10y \le 250 \\
 80 \le 10x + 20y \le 150 \\
 x \ge 0; \ y \ge 0
 \end{cases}
 \Rightarrow 8 \le x + 2y \le 15 \\
 x \ge 0; \ y \ge 0$$

Dibujamos las rectas que delimitan la región factible.

As
$$y = 11$$
 $y = 25$ $y = 25$

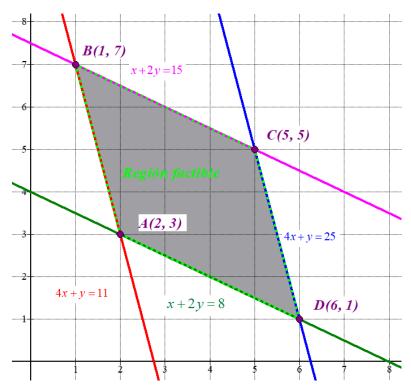


Como las restricciones del problema son
$$8 \le x + 2y \le 15$$
 la región factible es la región del $x \ge 0; y \ge 0$

primer cuadrante que está por debajo de la recta azul y rosa, y por encima de las rectas verde y roja. Comprobamos que el punto P(4, 4) perteneciente a dicha región cumple las restricciones.

$$\begin{array}{l}
11 \le 4 \cdot 4 + 4 \le 25 \\
8 \le 4 + 2 \cdot 4 \le 15 \\
4 \ge 0; 4 \ge 0
\end{array}$$
 ¡Se cumplen todas!

Coloreamos de gris la región factible en el siguiente dibujo y determinamos las coordenadas de sus vértices.



Los vértices son A(2, 3); B(1, 7); C(5, 5) y D(6, 1).

Valoramos la función objetivo N(x, y) = x + y en cada vértice en busca del valor mínimo.

$$A(2, 3) \rightarrow N(2,3) = 2 + 3 = 5$$
 ¡Mínimo!

$$B(1,7) \rightarrow N(1,7) = 1+7=8$$

$$C(5,5) \rightarrow N(5,5) = 5 + 5 = 10$$

$$D(6, 1) \rightarrow N(6,1) = 6+1=7$$

El número mínimo es 5 y se consigue en el vértice A(2, 3).

Para minimizar el número de comprimidos que se deben tomar consiguiendo la ingesta de la vitamina C y magnesio recomendado se deben tomar 2 comprimidos de VITAMIN y 3 de MAGNE, un total de 5 comprimidos.

P2.

Se considera el siguiente sistema de ecuaciones lineales dependiente del parámetro real k:

$$\begin{cases} x - 3y + 5z = 0 \\ ky + (5 - k)z = -10 \\ x - 3y + kz = 10 \end{cases}$$

- a) Clasificar el sistema según su número de soluciones para los distintos valores de k.
- b) Resolver el sistema para k = 1
- a) La matriz de coeficientes asociada al sistema es $A = \begin{pmatrix} 1 & -3 & 5 \\ 0 & k & 5-k \\ 1 & -3 & k \end{pmatrix}$ y la matriz ampliada es

$$A/B = \begin{pmatrix} 1 & -3 & 5 & 0 \\ 0 & k & 5-k & -10 \\ 1 & -3 & k & 10 \end{pmatrix}$$

Averiguamos cuando se anula el determinante de la matriz A.

$$|A| = \begin{vmatrix} 1 & -3 & 5 \\ 0 & k & 5-k \\ 1 & -3 & k \end{vmatrix} = k^2 - 3(5-k) + 0 - 5k - 0 + 3(5-k) =$$

$$=k^2-15+3k-5k+15-3k=k^2-5k$$

$$|A| = 0 \Rightarrow k^2 - 5k = 0 \Rightarrow k(k-5) = 0 \Rightarrow \begin{cases} k = 0 \\ k - 5 = 0 \Rightarrow k = 5 \end{cases}$$

Analizamos tres casos por separado.

CASO 1. $k \neq 0$ y $k \neq 5$

En este caso la matriz A tiene determinante no nulo y su rango es 3, al igual que el rango de A/B y el número de incógnitas. El sistema es compatible determinado (una única solución)

CASO 2. k = 0

En este caso el determinante de la matriz A es nulo y su rango no es 3.

Analizamos el rango de A y A/B usando el método de Gauss para triangular la matriz y que sea más fácil de obtener el rango.

$$A/B = \begin{pmatrix} 1 & -3 & 5 & 0 \\ 0 & 0 & 5 & -10 \\ 1 & -3 & 0 & 10 \end{pmatrix} \Rightarrow \begin{cases} \text{Fila } 3^{a} - \text{Fila } 1^{a} \\ 1 & -3 & 0 & 10 \\ -\frac{1}{0} & 3 & -5 & 0 \\ \hline 0 & 0 & -5 & 10 \end{pmatrix} \Rightarrow \text{Nueva Fila } 3^{a} \end{cases}$$

$$\Rightarrow \begin{pmatrix} 1 & -3 & 5 & 0 \\ 0 & 0 & 5 & -10 \\ 0 & 0 & -5 & 10 \end{pmatrix} \Rightarrow \begin{cases} \text{Fila } 3^{a} + \text{Fila } 2^{a} \\ 0 & 0 & -5 & 10 \\ 0 & 0 & 0 & 0 \end{cases} \Rightarrow \begin{cases} \text{Fila } 3^{a} + \text{Fila } 2^{a} \\ 0 & 0 & -5 & 10 \\ 0 & 0 & 0 & 0 \end{cases} \Rightarrow \begin{cases} \frac{A/B}{1 - 3 + 5} & 0 \\ 0 & 0 & 5 & -10 \\ 0 & 0 & 0 & 0 \end{cases}$$

El rango de la matriz A es 2, al igual que el de A/B, pero es menor que el número de incógnitas (3). El sistema es compatible indeterminado (infinitas soluciones).

CASO 3. k = 5

En este caso el determinante de la matriz A es nulo y su rango no es 3.

El sistema queda
$$\begin{cases} x - 3y + 5z = 0 \\ 5y = -10 \end{cases}$$
. Se observa que la primera y tercera ecuación son
$$x - 3y + 5z = 10$$

iguales salvo el segundo término de la igualdad, por lo que el sistema es incompatible (sin solución).

Resumiendo: Si $k \ne 0$ y $k \ne 5$ el sistema tiene una única solución, si k = 0 el sistema tiene infinitas soluciones y si k = 5 el sistema no tiene solución.

b) Para k = 1 el sistema tiene una única solución. Lo resolvemos.

$$\begin{cases} x - 3y + 5z = 0 \\ y + 4z = -10 \\ x - 3y + z = 10 \end{cases} \Rightarrow \begin{cases} x - 3y + 5z = 0 \\ y = -10 - 4z \\ x - 3y + z = 10 \end{cases} \Rightarrow \begin{cases} x - 3(-10 - 4z) + 5z = 0 \\ x - 3(-10 - 4z) + z = 10 \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} x+30+12z+5z=0 \\ x+30+12z+z=10 \end{cases} \Rightarrow \begin{cases} x+17z=-30 \\ x+13z=-20 \end{cases} \Rightarrow \begin{cases} x=-30-17z \\ x+13z=-20 \end{cases} \Rightarrow$$

$$\Rightarrow -30 - 17z + 13z = -20 \Rightarrow -4z = 10 \Rightarrow \boxed{z = \frac{10}{-4} = \frac{-5}{2}} \Rightarrow \boxed{\begin{vmatrix} x = -30 - 17\frac{-5}{2} = \frac{25}{2} \\ y = -10 - 4\frac{-5}{2} = 0 \end{vmatrix}}$$

La solución del sistema es $x = \frac{25}{2}$, y = 0 y $z = \frac{-5}{2}$.

P3.

Sea la función:
$$f(x) = \begin{cases} x^2 + x - 2 & \text{si } x \le 1 \\ a + \ln(x) & \text{si } x > 1 \end{cases}$$

- a) Determinar el valor de α para que f(x) sea continua en todo su dominio.
- b) Para a = 1, estudiar los puntos de corte con los ejes, monotonía y extremos relativos.
- a) En $(-\infty, 1)$ la función es una parábola y es continua. En el intervalo $(1, +\infty)$ la función es $f(x) = a + \ln(x)$ y es continua en el intervalo de definición.

La función debe ser continua en x = 1.

$$f(1) = 1^{2} + 1 - 2 = 0$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x^{2} + x - 2 = 0$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} a + \ln(x) = a + \ln(1) = a$$

$$f(1) = \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x)$$

Para a = 0 la función es continua en todo su dominio.

b) Para a = 1 la función queda: $f(x) = \begin{cases} x^2 + x - 2 & \text{si } x \le 1 \\ 1 + \ln(x) & \text{si } x > 1 \end{cases}$

Hallamos los puntos de corte con los ejes.

$$f(x) = \begin{cases} x^2 + x - 2 & \text{si } x \le 1 \\ 1 + \ln(x) & \text{si } x > 1 \end{cases} \Rightarrow f(0) = 0^2 + 0 - 2 = -2 \Rightarrow A(0, -2)$$

$$eje OY \to x = 0$$

El punto de corte con el eje OY es A(0, -2).

$$f(x) = \begin{cases} x^2 + x - 2 & \text{si } x \le 1 \\ 1 + \ln(x) & \text{si } x > 1 \end{cases} \Rightarrow eje OX \rightarrow y = 0$$

$$\Rightarrow \begin{cases} x^2 + x - 2 = 0 \to x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-2)}}{2} = \frac{-1 \pm 3}{2} = \begin{cases} \frac{-1 + 3}{2} = 1 \in (-\infty, 1] \\ \frac{-1 - 3}{2} = -2 \in (-\infty, 1] \end{cases}$$
$$1 + \ln(x) = 0 \to \ln(x) = -1 \to x = e^{-1} \approx 0.36 \notin (1, +\infty)$$

Los puntos de corte con el eje OX son B(1, 0) y C(-2, 0).

Utilizamos la derivada para estudiar el crecimiento y decrecimiento de la función.

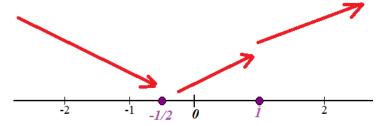
$$f'(x) = \begin{cases} 2x+1 & \text{si } x < 1 \\ \frac{1}{x} & \text{si } x > 1 \end{cases}$$

$$f'(x) = 0 \Rightarrow \begin{cases} 2x + 1 = 0 \rightarrow 2x = -1 \rightarrow x = \frac{-1}{2} \in (-\infty, 1) \\ \frac{1}{x} = 0 \rightarrow \text{iIm posible!} \end{cases}$$

Estudiamos el signo de la derivada antes, entre y después de $x = \frac{-1}{2}$ y x = 1.

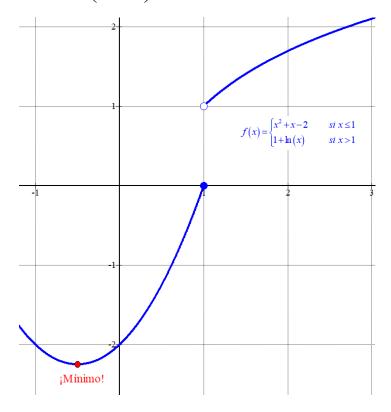
- En el intervalo $(-\infty, -1/2)$ tomamos x = -I y la derivada vale f'(-1) = 2(-1) + 1 = -1 < 0. La función decrece en $(-\infty, -1/2)$.
- En el intervalo (-1/2,1) tomamos x = 0 y la derivada vale $f'(0) = 2 \cdot 0 + 1 = 1 > 0$. La función crece en (-1/2,1).
- En el intervalo $(1,+\infty)$ tomamos x=2 y la derivada vale $f'(2)=\frac{1}{2}>0$. La función crece en $(-\infty,-1/2)$.

La función sigue el esquema siguiente.



La función decrece en $(-\infty, -1/2)$ y crece en $(-1/2, 1) \cup (1, +\infty)$.

La función tiene un mínimo relativo en $x = \frac{-1}{2}$. Como $f(-0.5) = (-0.5)^2 - 0.5 - 2 = -2.25$ el mínimo tiene coordenadas $\left(\frac{-1}{2}, \frac{-9}{4}\right)$



P4.

La temperatura (en grados centígrados) del agua del mar Mediterráneo ha cambiado con el tiempo según la función T(x), donde x representa los años transcurridos desde el inicio de 2010:

$$T(x) = \begin{cases} 22 + 5.5x - 1.5x^2 & \text{si } 0 \le x < 3\\ \frac{52x^2 + 3x + 23}{2x^2 + 2} & \text{si } x \ge 3 \end{cases}$$

- a) Estudiar si la temperatura del agua ha cambiado de forma continua a lo largo de los años.
- b) Hallar la temperatura del agua al inicio del año 2014 y razonar cuál se prevé que será la temperatura del agua dentro de muchos años.
- a) En el intervalo [0,3) la función es $T(x) = 22 + 5.5x 1.5x^2$ que es continua (un trozo de parábola).

En el intervalo $(3,+\infty)$ la función es $T(x) = \frac{52x^2 + 3x + 23}{2x^2 + 2}$ que es continua pues su denominador no se anula para ningún valor; $2x^2 + 2 = 0 \Rightarrow x^2 = -1 \Rightarrow x = \sqrt{-1} = \text{Im posible}$.

Comprobamos si es continua en el cambio de definición (x = 3).

$$T(3) = \frac{52 \cdot 3^{2} + 3 \cdot 3 + 23}{2 \cdot 3^{2} + 2} = 25$$

$$\lim_{x \to 3^{-}} T(x) = \lim_{x \to 3^{-}} 22 + 5.5x - 1.5x^{2} = 22 + 5.5 \cdot 3 - 1.5 \cdot 3^{2} = 25$$

$$\lim_{x \to 3^{+}} T(x) = \lim_{x \to 3^{+}} \frac{52x^{2} + 3x + 23}{2x^{2} + 2} = 25$$

La función es continua en x = 3.

La función es continua en $[0,+\infty)$.

b) La temperatura del agua al inicio del año 2014 es el valor de T(4).

$$T(4) = \frac{52 \cdot 4^2 + 3 \cdot 4 + 23}{2 \cdot 4^2 + 2} = 25.5$$

La temperatura del agua al inicio del año 2014 es de 25.5°.

Calculamos el límite de la función cuando x tiende a $+\infty$.

$$\lim_{x \to +\infty} T(x) = \lim_{x \to +\infty} \frac{52x^2 + 3x + 23}{2x^2 + 2} = \lim_{x \to +\infty} \frac{\frac{52x^2}{x^2} + \frac{3x}{x^2} + \frac{23}{x^2}}{\frac{2x^2}{x^2} + \frac{2}{x^2}} =$$

$$= \lim_{x \to +\infty} \frac{52 + \frac{3}{x} + \frac{23}{x^2}}{2 + \frac{2}{x^2}} = \frac{52 + \frac{3}{\infty} + \frac{23}{\infty}}{2 + \frac{2}{\infty}} = \frac{52}{2} = 26$$

La temperatura del agua dentro de muchos años se aproximará a los 26°.

P5.

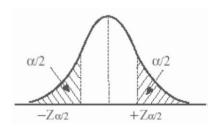
El número de viajes realizados anualmente por habitantes de Castilla y León a comunidades limítrofes sigue una distribución normal cuya desviación típica es $\sigma = 10$. Si seleccionamos una muestra de 625 viajeros, la media de viajes realizados por los mismos es de 16.

- a) ¿Cuál es el intervalo de confianza para la media de viajes anuales en toda la población para un nivel de significación del 4 %?
- b) ¿Cuál sería el error máximo admisible si se hubiera utilizado una muestra de tamaño 500 y un nivel de confianza del 90 %?
- a) X = El número de viajes realizados anualmente por habitantes de Castilla y León a comunidades limítrofes. $X = N(\mu, 10)$

Tamaño de la muestra es n = 625. La media muestral es $\bar{x} = 16$ viajes.

Con un nivel de significación del 4 % tenemos

$$\alpha = 0.04 \Rightarrow \alpha/2 = 0.02 \Rightarrow 1 - \alpha/2 = 0.98 \Rightarrow z_{\alpha/2} = \frac{2.05 + 2.06}{2} = 2.055$$



	00,0	0,01	0,02	0,03	0,04	0,05	90,0
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5 99	U,5 <mark>2</mark> 39
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5 <mark>9</mark> 6	0, 5 836
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5 <mark>8</mark> 7	0,6 <mark>0</mark> 26
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6 <mark>6</mark> 8	80 4 3 , 0
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6 36	0,6772
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7 88	0,7123
9,0	0,7257	0,7291	0,7324	0,7357	0,7389	0,7 22	0,7 <mark>4</mark> 54
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7 34	0,764
8,0	0,7881	0,7910	0,7939	0,7967	0,7995	0,8 23	0,8051
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	D,8 <mark>8</mark> 9	0,8315
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8 31	0,8554
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8 49	0,8770
1,2	0,8849	0,8869	D,8888	0,8907	0,8925	0,8 44	0,8 <mark>9</mark> 62
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9 15	0,8 <mark>1</mark> 31
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9: <mark>6</mark> 5	0,9279
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9 94	0,1406
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9 05	0,1 <mark>5</mark> 15
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9 99	0, <mark>1</mark> 608
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	D,9 1 78	0, <mark>1</mark> 686
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9 44	0.1 750
2,0	-	0,0770	0,0702	0,0700	0.0702	0,9798	0,9803
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846

Calculamos el error.

$$Error = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} = 2.055 \cdot \frac{10}{\sqrt{625}} = 0.822$$

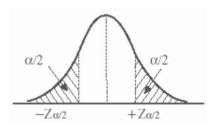
El error es de 0.822 viajes.

El intervalo de confianza es:

$$(\bar{x} - Error, \bar{x} + Error) = (16 - 0.822, 16 + 0.822) = (15.178, 16.822)$$

b) Con un nivel de confianza del 90 % tenemos

$$1 - \alpha = 0.90 \Rightarrow \alpha = 0.1 \Rightarrow \alpha/2 = 0.05 \Rightarrow 1 - \alpha/2 = 0.95 \Rightarrow z_{\alpha/2} = \frac{1.64 + 1.65}{2} = 1.645$$



	00,0	0,01	0,02	0,03	0,04	0,05	0
0,0	0,5000	0,5040	0,5080	0,5120	0,160	0,5 99	0,:
0,1	0,5398	0,5438	0,5478	0,5517	0, <mark>557</mark>	0,5 <mark>.</mark> 96	0,:
0,2	0,5793	0,5832	0,5871	0,5910	0; <mark>:</mark> 948	0,5 <mark>:</mark> 87	0,0
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6: <mark>6</mark> 8	0,0
0,4	0,6554	0,6591	0,6628	0,6664	0,0700	D,67 <mark>3</mark> 6	0,0
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,71	0,
0,6	0,7257	0,7291	0,7324	0,7357	D, <mark>73</mark> 89	0,7422	0,
0,7	0,7580	0,7611	0,7642	0,7673	0,704	0,7784	0,
8,0	0,7881	0,7910	0,7939	0,7967	0,7995	0,80	0,8
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,82 <mark>8</mark> 9	0,
1,0	0,8413	0,8438	0,8461	0,8485	808,0	0,85	0,
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,87 4 9	0,
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,89 14	0,3
1,3	0,9032	0,9049	0,9066	0,9082	999	0,91	0,9
1,4	0,9192	0,9207	0,9222	0,9236	0,9:51	0,92 5	0.9
1,5	0,9332	0,9345	0,9357	0,9370	0,9 82	0,93 4	0,
1,6	DO ONES	0,0400	0,0171	0,0101	0,9495	0,9505	0,
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.8

Utilizamos la fórmula del error.

$$Error = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} = 1.645 \cdot \frac{10}{\sqrt{500}} \approx 0.7357$$

El error máximo admisible si se hubiera utilizado una muestra de tamaño 500 y un nivel de confianza del 90 % es de 0.7357 viajes.

P6.

En un instituto, 44 de cada 100 chicas y 5 de cada 10 chicos de segundo curso de Bachillerato están matriculados en la asignatura *Empresa y diseño de modelos de negocio*. Hay 150 chicas y 75 chicos en segundo curso de Bachillerato.

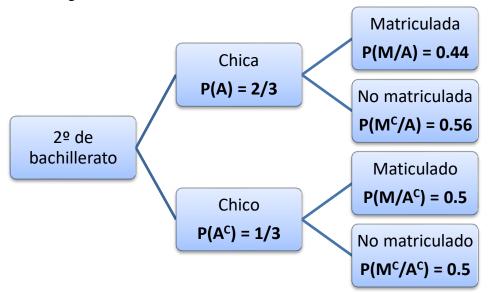
- a) Si se elige un estudiante al azar de segundo curso de Bachillerato, hallar la probabilidad de que no esté matriculado en *Empresa y diseño de modelos de negocio*.
- b) Sabiendo que el estudiante elegido está matriculado en *Empresa y diseño de modelos de negocio*, ¿cuál es la probabilidad de que sea chica?

Llamamos A al suceso "ser chica de 2º de bachillerato", A^C al suceso "ser chico de 2º de bachillerato" y M al suceso "estar matriculado en la asignatura *Empresa y diseño de modelos de negocio*".

Hay
$$150 + 75 = 225$$
 alumnos en 2° de bachillerato. $P(A) = \frac{150}{225} = \frac{2}{3} \approx 0.66$,

$$P(A^{c}) = 1 - \frac{2}{3} = \frac{1}{3} \approx 0.33, \ P(M/A) = 0.44; P(M/A^{c}) = \frac{5}{10} = 0.5.$$

Realizamos un diagrama de árbol.



a) Nos piden calcular $P(M^c)$. Aplicamos el teorema de la probabilidad total.

$$P(M^{c}) = P(A)P(M^{c}/A) + P(A^{c})P(M^{c}/A^{c}) = \frac{2}{3} \cdot 0.56 + \frac{1}{3} \cdot 0.5 = \boxed{0.54}$$

La probabilidad de que al elegir un estudiante de 2º de bachillerato no esté matriculado en *Empresa y diseño de modelos de negocio* es de 0.54.

b) Nos piden calcular P(A/M). Es una probabilidad a posteriori. Aplicamos el teorema de Bayes.

$$P(A/M) = \frac{P(A \cap M)}{P(M)} = \frac{P(A)P(M/A)}{1 - P(M^{c})} = \frac{\frac{2}{3} \cdot 0.44}{1 - 0.54} = \boxed{\frac{44}{69} \approx 0.6377}$$

Sabiendo que el estudiante elegido está matriculado en *Empresa y diseño de modelos de negocios* la probabilidad de que sea chica es de 0.6377.

C1.

Despejar la incógnita X en la ecuación matricial C(A+X)=B-2X.

$$C(A+X) = B-2X \Rightarrow CA+CX = B-2X \Rightarrow CX+2X = B-CA \Rightarrow$$

$$\Rightarrow (C+2I)X = B-CA \Rightarrow \left\{ \text{Existe}(C+2I)^{-1} \right\} \Rightarrow X = (C+2I)^{-1}(B-CA)$$

C2.

Calcular el área bajo la curva $f(x) = x^3 + 3x^2 - 2$ y el eje OX en el intervalo [-2,-1].

Comprobamos si la función corta el eje OX entre -2 y -1.

$$\begin{cases} f(x) = x^3 + 3x^2 - 2 \\ eje OX \rightarrow y = 0 \end{cases} \Rightarrow x^3 + 3x^2 - 2 = 0 \Rightarrow \dots$$

La función no corta el eje OX en el intervalo (-2, -1). El valor del área bajo la curva es la integral definida entre -2 y -1 de la función.

Como $f(-1.5) = (-1.5)^3 + 3(-1.5)^2 - 2 = 1.375 > 0$ podemos afirmar que la función es positiva en el intervalo [-2,-1].

$$\int_{-2}^{-1} f(x) dx = \int_{-2}^{-1} x^3 + 3x^2 - 2dx = \left[\frac{x^4}{4} + x^3 - 2x \right]_{-2}^{-1} =$$

$$= \left\lceil \frac{\left(-1\right)^4}{4} + \left(-1\right)^3 - 2\left(-1\right) \right\rceil - \left\lceil \frac{\left(-2\right)^4}{4} + \left(-2\right)^3 - 2\left(-2\right) \right\rceil = \frac{1}{4} - 1 + 2 - 4 + 8 - 4 = \frac{5}{4} = \boxed{1.25 \, u^2}$$

C3.

Se lanza tres veces una moneda no trucada. Calcular la probabilidad de que salgan al menos dos caras seguidas.

Para sacar al menos dos caras seguidas, deberíamos sacar dos caras seguidas y una cruz o bien tres caras.

Sería sacar CC+, +CC o CCC.

La probabilidad de sacar cara al lanzar la moneda es 1/2 y la de sacar cruz también es 1/2. La probabilidad de sacar al menos dos caras seguidas es:

$$P(CC+)+P(+CC)+P(CCC)=\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}=3\frac{1}{8}=\frac{3}{8}=0.375$$

La probabilidad de que salgan al menos dos caras seguidas al lanzar una moneda no trucada tres veces es 0.375.