

EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD (EBAU/PAU)

CURSO 2023-2024

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES (1)

Convocatoria:

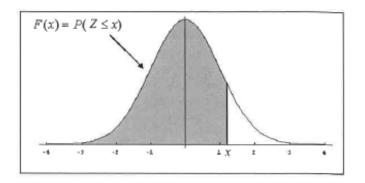
Instrucciones: Resolver un máximo de 4 preguntas, eligiendo UNA entre A1 y B1, UNA entre A2 y B2, UNA entre A3 y B3 y UNA entre A4 y B4.

- **A1.** Dos agricultores de medianías producen manzanas de tres variedades: reineta, fuji y golden. De las manzanas producidas por el agricultor A, el 70% son reinetas, el 20% fuji y el resto golden; de las producidas por el agricultor B, un 50% son reinetas, un 30% golden y el resto fuji. Un supermercado de la zona vende manzanas solamente de estos agricultores. El 60% de las manzanas las adquiere del agricultor A y el 40% restante del B.
- a) Dibuja el árbol de probabilidades correspondiente a la situación descrita. (0,5 puntos)
- b) ¿Cuál es la probabilidad de que la manzana elegida al azar por un cliente sea de la variedad reineta? (1 punto)
- c) Si la manzana elegida no es de la variedad reineta ¿cuál es la probabilidad de que haya sido producida por el agricultor A? (1 punto)
- **B1.** Según estudios recientes sobre el impacto de la IA (Inteligencia Artificial) en la educación, el 73% del profesorado ya ha utilizado herramientas de IA en algunas ocasiones. Si en un determinado departamento de la universidad hay 30 profesores.
- a) Calcula la probabilidad de que no hayan utilizado herramientas de IA entre 10 y 15 profesores. (1 punto)
- b) ¿Cuál es la probabilidad de que menos de 10 profesores hayan utilizado la IA? (1 punto)
- c) Si el número aproximado de profesores que imparte clase en una determinada facultad es de 80, ¿cuántos se espera que hayan utilizado aplicaciones de IA en su trabajo? (0,5 puntos)
- **A2.** Por motivos de ajustes presupuestarios, una empresa multinacional de trabajo a distancia debe despedir al 10 % de sus trabajadores.
- a) En una ciudad hay 10 trabajadores a distancia de esa empresa. ¿Cuál es la probabilidad de que, a lo sumo, 3 sean despedidos? (0,75 puntos)
- b) En España hay 300 trabajadores a distancia de la citada empresa. ¿Cuál es la probabilidad de que al menos 280 conserven su empleo? (0,75 puntos)
- c) Temiendo posibles conflictos laborales, la dirección de la empresa, selecciona una muestra aleatoria de 400 de sus trabajadores a distancia, de los que 50 optarían por un despido voluntario incentivado. Hallar un intervalo de confianza al 97% para la proporción de trabajadores a distancia de la empresa que optarían por un despido voluntario incentivado. (1 punto)
- **B2.** Se desea estimar la cantidad media de emisiones de dióxido de carbono (CO₂) por vehículo en una ciudad. Para ello, se selecciona una muestra aleatoria de 100 vehículos y se encuentra que la cantidad media de CO₂ emitida por vehículo es de 150 g/km, con una desviación típica de 25 g/km. Suponiendo que esta variable es normal:
- a) Determinar un intervalo de confianza del 95% para la cantidad media de CO₂ emitida por vehículo en la ciudad. (0,75 puntos)
- b) Si se admite un error máximo de 3,5 g/km, para estimar la cantidad media de CO₂ emitida por vehículo, con un nivel de confianza igual a 0,9 y manteniendo la desviación típica inicial, ¿a cuántos vehículos es necesario medir la cantidad de CO₂? (1 punto)
- c) Si la medición se realizara a 75 vehículos y se obtuviera la misma media de 150 g/km y el mismo intervalo del apartado a), con una confianza del 86%, ¿cuál debería ser la desviación típica? (0,75 puntos)

A3. La producción de energía en Kw de un panel solar, orientado hacia el sur, durante las horas del día, viene dada por la función:

$$P(t) = \begin{cases} -\frac{4}{25}(t-7)(t-17) & \text{si } 7 \le t \le 14\\ \frac{3}{25}(-7t+126) & \text{si } 14 < t \le 18 \end{cases}$$

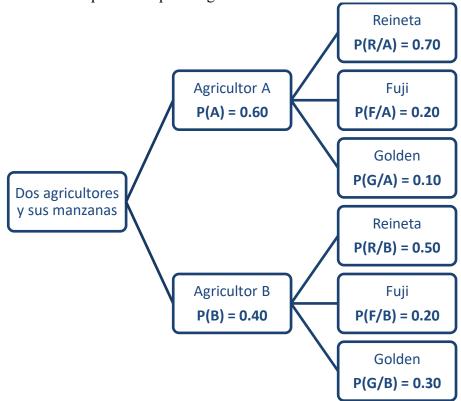
- a) Justificando las respuestas, explica si es continua y derivable. (0,75 puntos)
- b) Estudia el crecimiento y decrecimiento de la producción de energía durante el día. ¿A qué hora se alcanzó la máxima producción de energía y a cuánto ascendió? (1 punto)
- c) ¿A qué hora, se superaron por primera vez los 3 Kw de producción? (0,75 puntos)
- **B3.** En un muro del paseo marítimo se debe recubrir con lona la superficie determinada por $y \le \frac{-x^2+9}{3}$, $x \ge 0$ e $y \ge 0$, (las unidades se miden en metros).
- a) Representar dicha superficie. (0,75 puntos)
- b) ¿Cuántos metros cuadrados tiene la superficie? (1,25 puntos)
- c) El precio del metro cuadrado de lona es de 20 euros y, al hacer la instalación se debe usar un 15% más de la superficie a cubrir. Además, el coste de instalación es de 5 euros por metro cuadrado de lona adquirida. ¿Cuánto cuesta recubrir la superficie? (0,5 puntos)
- **A4**. En una fábrica, en la que se producen mesas y estanterías, se dispone de un total de 150 metros cuadrados de madera y 90 horas de mano de obra. Para fabricar una mesa se necesitan 3 metros cuadrados de madera y 1 hora de mano de obra y para fabricar una estantería se necesitan 4 metros cuadrados de madera y 3 horas de mano de obra. La fábrica obtiene un beneficio de 160 € por la producción de cada mesa, y de 225 € por cada estantería.
- a) Formular el correspondiente problema de programación lineal (0,75 puntos).
- b) Representar la región factible e indicar cuáles son sus vértices. (1 punto)
- c) ¿Cuántos muebles de cada tipo se deben fabricar para maximizar el beneficio? ¿Cuál es el valor de dicho beneficio? (0,75 puntos)
- **B4.** Una jugadora de ajedrez ha conseguido premios en 51 de los torneos en los que ha participado a lo largo de su vida. Los torneos han sido locales, nacionales e internacionales. El número de torneos locales en los que ha jugado ha sido el doble de los nacionales; además por cada cinco torneos nacionales ha participado en dos internacionales. Los torneos en los que ha conseguido premio representan un 30% de todos los torneos en los que ha participado.
- a) Plantear el correspondiente sistema de ecuaciones. (1,5 puntos)
- b) ¿En cuántos torneos de cada clase ha participado esta jugadora? (1 punto)



	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998
3,5	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998
3,6	0,9998	0,9998	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,7	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,8	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,9	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000

SOLUCIONES

- **A1.** Dos agricultores de medianías producen manzanas de tres variedades: reineta, fuji y golden. De las manzanas producidas por el agricultor A, el 70% son reinetas, el 20% fuji y el resto golden; de las producidas por el agricultor B, un 50% son reinetas, un 30% golden y el resto fuji. Un supermercado de la zona vende manzanas solamente de estos agricultores. El 60% de las manzanas las adquiere del agricultor A y el 40% restante del B.
- a) Dibuja el árbol de probabilidades correspondiente a la situación descrita. (0,5 puntos)
- b) ¿Cuál es la probabilidad de que la manzana elegida al azar por un cliente sea de la variedad reineta? (1 punto)
- c) Si la manzana elegida no es de la variedad reineta ¿cuál es la probabilidad de que haya sido producida por el agricultor A? (1 punto)
- a) Llamamos R al suceso "la manzana es reineta", F al suceso "la manzana es fuji", G al suceso "la manzana es golden", A al suceso "la manzana es producida por el agricultor A" y B al suceso "la manzana es producida por el agricultor B".



b) Nos piden calcular P(R). Aplicamos el teorema de la probabilidad total.

$$P(R) = P(A)P(R/A) + P(B)P(R/B) = 0.6 \cdot 0.7 + 0.4 \cdot 0.5 = \boxed{0.62}$$

La probabilidad de que la manzana elegida al azar por un cliente sea de la variedad reineta es de 0.62.

c) Nos piden calcular $P(A/\overline{R})$. Es una probabilidad a posteriori. Aplicamos el teorema de Bayes.

$$P(A/\overline{R}) = \frac{P(A \cap \overline{R})}{P(\overline{R})} = \frac{P(A)P(\overline{R}/A)}{1 - P(R)} = \frac{0.6 \cdot (0.2 + 0.1)}{1 - 0.62} = \boxed{\frac{9}{19} \approx 0.4737}$$

Si la manzana elegida no es de la variedad reineta la probabilidad de que haya sido producida por el agricultor A es de 0.4737.

- **B1.** Según estudios recientes sobre el impacto de la IA (Inteligencia Artificial) en la educación, el 73% del profesorado ya ha utilizado herramientas de IA en algunas ocasiones. Si en un determinado departamento de la universidad hay 30 profesores.
- a) Calcula la probabilidad de que no hayan utilizado herramientas de IA entre 10 y 15 profesores. (1 punto)
- b) ¿Cuál es la probabilidad de que menos de 10 profesores hayan utilizado la IA? (1 punto)
- c) Si el número aproximado de profesores que imparte clase en una determinada facultad es de 80, ¿cuántos se espera que hayan utilizado aplicaciones de IA en su trabajo? (0,5 puntos)
- a) Llamamos X a la variable aleatoria que cuenta el número de profesores que no han utilizado la IA en alguna ocasión de un grupo de 30 profesores.

X es una variable binomial donde el número de repeticiones es n = 30 y la probabilidad de que un profesor no haya utilizado la IA es p = 1 - 0.73 = 0.27. X = B(30, 0.27).

Calculamos $P(10 \le X \le 15)$.

$$P(10 \le X \le 15) = P(X = 10) + P(X = 11) + P(X = 12) + P(X = 13) +$$

$$+P(X=14)+P(X=15)=\binom{30}{10}0.27^{10}\cdot0.73^{20}+\binom{30}{11}0.27^{11}\cdot0.73^{19}+$$

$$+ \binom{30}{12} 0.27^{12} \cdot 0.73^{18} + \binom{30}{13} 0.27^{13} \cdot 0.73^{17} + \binom{30}{14} 0.27^{14} \cdot 0.73^{16} + \binom{30}{15} 0.27^{15} \cdot 0.73^{15} = \boxed{0.2736}$$

La probabilidad de que no hayan utilizado herramientas de IA entre 10 y 15 profesores es de 0.2736.

b) Llamamos Y a la variable aleatoria que cuenta el número de profesores que han utilizado la IA en alguna ocasión de un grupo de 30 profesores.

Y es una variable binomial donde el número de repeticiones es n = 30 y la probabilidad de que un profesor haya utilizado la IA es p = 0.73. Y = B(30, 0.73).

Nos piden calcular P(Y < 10). Esta probabilidad es muy costosa de calcular utilizando la variable binomial y sus fórmulas. Usamos la aproximación de la variable binomial Y a la variable normal Y' de media $\mu = np = 30 \cdot 0.73 = 21.9$ y desviación típica $\sigma = \sqrt{npq} = \sqrt{30 \cdot 0.73 \cdot 0.27} \approx 2.4317$.

Y = B(30,0.73) se aproxima con Y' = N(21.9, 2.4317).

Esta aproximación es buena pues np = 21.9 > 5 y $nq = 30 \cdot 0.27 = 8.1 > 5$.

$$P(Y < 10) = \{\text{Corrección de Yates}\} = P(Y' \le 9.5) = \{\text{Tipificamos}\} = \{\text{Tipificamos}\}$$

$$= P\left(Z \le \frac{9.5 - 21.9}{2.4317}\right) = P\left(Z \le -5.1\right) = P\left(Z \ge 5.1\right) = 1 - P\left(Z \le 5.1\right) = 1$$

=
$$\{$$
No aparece en la tabla $N(0,1)\}$ = $1-1=0$

La probabilidad de que menos de 10 profesores hayan utilizado la IA es prácticamente 0.

Usando la binomial sería:

c) Llamamos X a la variable aleatoria que cuenta el número de profesores que han utilizado la IA en alguna ocasión de un grupo de 80 profesores.

X es una variable binomial donde el número de repeticiones es n = 80 y la probabilidad de que un profesor haya utilizado la IA es p = 0.73. X = B(80, 0.73)

El número esperado de profesores que hayan utilizado la IA es el valor de la media.

$$Media = np = 80 \cdot 0.73 = 58.4$$

El número esperado de profesores que hayan utilizado la IA es de aproximadamente 58 profesores.

- **A2.** Por motivos de ajustes presupuestarios, una empresa multinacional de trabajo a distancia debe despedir al 10 % de sus trabajadores.
- a) En una ciudad hay 10 trabajadores a distancia de esa empresa. ¿Cuál es la probabilidad de que, a lo sumo, 3 sean despedidos? (0,75 puntos)
- b) En España hay 300 trabajadores a distancia de la citada empresa. ¿Cuál es la probabilidad de que al menos 280 conserven su empleo? (0,75 puntos)
- c) Temiendo posibles conflictos laborales, la dirección de la empresa, selecciona una muestra aleatoria de 400 de sus trabajadores a distancia, de los que 50 optarían por un despido voluntario incentivado. Hallar un intervalo de confianza al 97% para la proporción de trabajadores a distancia de la empresa que optarían por un despido voluntario incentivado. (1 punto)
- a) Llamamos X = "número de despedidos de un grupo de 10 trabajadores". X es una variable binomial donde el número de repeticiones es n = 10 y la probabilidad de que un trabajador sea despedido es p = 0.10. X = B(10, 0.1). Debemos calcular $P(X \le 3)$.

$$P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) =$$

$$= \binom{10}{0} 0.1^{0} \cdot 0.9^{10} + \binom{10}{1} 0.1^{1} \cdot 0.9^{9} + \binom{10}{2} 0.1^{2} \cdot 0.9^{8} + \binom{10}{3} 0.1^{3} \cdot 0.9^{7} = \boxed{0.9872}$$

La probabilidad de que, a lo sumo, 3 empleados sean despedidos es de 0.9872.

b) Llamamos X = "número de despedidos de un grupo de 300 trabajadores".
 X es una variable binomial donde el número de repeticiones es n = 300 y la probabilidad de que un trabajador sea despedido es p = 0.10. X = B(300, 0.1).
 El número de repeticiones es muy alto y debemos aproximar las probabilidades de la variable

El número de repeticiones es muy alto y debemos aproximar las probabilidades de la variable X a las probabilidades de una normal Y de media $\mu = np = 300 \cdot 0.1 = 30$ despidos y desviación típica $\sigma = \sqrt{npq} = \sqrt{300 \cdot 0.1 \cdot 0.9} \approx 5.1962$ despidos. Y = N(30, 5.1962)

Para que al menos 280 conserven su empleo deben ser despedidos 20 empleados o menos. Debemos calcular $P(X \le 20)$.

$$P(X \le 20) = \{\text{Corrección de Yates}\} = P(Y \le 20.5) = \{\text{Tipificamos}\} = \{\text{Tipificamos}\}$$

$$= P\left(Z \le \frac{20.5 - 30}{5.1962}\right) = P\left(Z \le -1.828\right) = P\left(Z \ge 1.828\right) = 1 - P\left(Z \le 1.828\right) = 1$$

=
$$\{Miramos en la tabla N(0,1)\}$$
 = 1 – 0.9664 = $\boxed{0.0336}$

	0	0,01	0,02	0,03	0.
0	0,5000	0,5040	0,5080	0,5120	0.51
0,1	0,5398	0,5438	0,5478	0,55 17	0,55
0,2	0,5793	0,5832	0,5871	0,5910	0,59
0,3	0,6179	0,6217	0,6255	0,6293	0,63
0,4	0,6554	0,6591	0,6628	0,6654	0,67
0,5	0,6915	0,6950	0,6985	0,7019	0,70
0,6	0,7257	0,7291	0,7324	0,7357	0,73
0,7	0,7580	0,7611	0,7642	0.7673	0,77
0,8	0,7881	0,7910	0,7939	0,79 57	0,79
0,9	0,8159	0,8186	0,8212	0,8288	0,82
1	0,8413	0,8438	0,8461	0,8435	0,85
1,1	0,8643	0,8665	0,8686	0.8708	0,87
1,2	0,8849	0,8869	0,8888	0,8907	0,89
1,3	0,9032	0,9049	0,9066	0,9082	0,90
1,4	0,9192	0,9207	0,9222	0,9286	0,92
1,5	0,9332	0,9345	0,9357	0,9370	0,93
1,6	0,9452	0,9463	0,9474	0.9484	0,94
17	0,9554	0,9564	0,9573	0.0532	0,95
1,8	0,9041	0,9049	0,9656	0,9664	0,96
1.9	0.9713	0.9719	0.9726	0.9732	0.97

La probabilidad de que al menos 280 empleados conserven su empleo tiene un valor aproximado de 0.0336.

c) La proporción muestral de los trabajadores a distancia que optan por un despido voluntario incentivado es de $p = \frac{50}{400} = \frac{1}{8} = 0.125$.

Con un nivel de confianza del 97 % calculamos $z_{\alpha/2}$

$$1-\alpha = 0.97 \Rightarrow \alpha = 0.03 \Rightarrow \alpha/2 = 0.015 \Rightarrow 1-\alpha/2 = 0.985 \Rightarrow z_{\alpha/2} = 2.17$$

	0	0,01	0.02	0.03	0.04	0.05	0.06	0.07	
0	0,5000	0,5040	0.5080	0,5120	0,5160	0,5199	0,5239	U,5¥19	0.
0,1	0,5000	0,5438	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0.
	0,5598	,	0,5478	0,5910	0,5557		0,6026		0.
0,2	,	0,5832	,	,	,	0,5987	,	0,6064	
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6143	0,
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7 '94	0,
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8 78	0,
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,
1	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8,77	0,
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9 47	0,
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9:192	0,
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9: 25	0,
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9416	0,
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,
2	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0.9808	0,
2,1	0,9021	0,3020	0,0000	0,3001	0,0000	0,0012	0,0040	0,9850	0,
20	n 0861	U 0864	U 0888	N 0971	N 0975	0.0270	N 0221	п ояял	n

Utilizamos la fórmula del error:

$$Error = z_{\alpha/2} \cdot \sqrt{\frac{p \cdot (1-p)}{n}} = 2.17 \cdot \sqrt{\frac{0.125 \cdot 0.875}{400}} = 0.036$$

El intervalo de confianza es:

$$(p - Error, p + Error) = (0.125 - 0.036; 0.125 + 0.036) = (0.089; 0.161)$$

- **B2.** Se desea estimar la cantidad media de emisiones de dióxido de carbono (CO₂) por vehículo en una ciudad. Para ello, se selecciona una muestra aleatoria de 100 vehículos y se encuentra que la cantidad media de CO₂ emitida por vehículo es de 150 g/km, con una desviación típica de 25 g/km. Suponiendo que esta variable es normal:
- a) Determinar un intervalo de confianza del 95% para la cantidad media de CO₂ emitida por vehículo en la ciudad. (0,75 puntos)
- b) Si se admite un error máximo de 3,5 g/km, para estimar la cantidad media de CO₂ emitida por vehículo, con un nivel de confianza igual a 0,9 y manteniendo la desviación típica inicial, ¿a cuántos vehículos es necesario medir la cantidad de CO₂? (1 punto)
- c) Si la medición se realizara a 75 vehículos y se obtuviera la misma media de 150 g/km y el mismo intervalo del apartado a), con una confianza del 86%, ¿cuál debería ser la desviación típica? (0,75 puntos)

X = cantidad de emisiones de dióxido de carbono (CO₂) por vehículo en una ciudad medida en g/km. $X = N(\mu, 25)$.

La muestra es de tamaño n = 100 vehículos, con una media muestral $\bar{x} = 25 \text{ g/km}$

a) Con un nivel de confianza del 95 % calculamos $z_{\alpha/2}$

$$1-\alpha = 0.95 \Rightarrow \alpha = 0.05 \Rightarrow \alpha/2 = 0.025 \Rightarrow 1-\alpha/2 = 0.975 \Rightarrow z_{\alpha/2} = 1.96$$

	0	0,01	0,02	0,03	0,04	0,05	0,06	
0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5 <mark>636</mark>	0,
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6 <mark>4</mark> 06	0,€
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6 <mark>772</mark>	0,€
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7 <mark>1</mark> 23	0,7
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7 <mark>454</mark>	0,7
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	3,0
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	9,0
1	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	3,0
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8 <mark>77</mark> 0	3,0
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	3,0
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	9,0
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	9,0
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	9,0
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	9,0
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	9,0
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0.9686	9,0
1,9	1,9713	0,0710	0,0726	0,0722	0,0720	0,0744	0,9750	9,0
2	ი 9772	N 9778	0 9783	0 9788	0 9793	n 9 7 98	0.9803	n s

Utilizamos la fórmula del error:

$$Error = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} = 1.96 \frac{25}{\sqrt{100}} = 4.9 \text{ g/km}$$

El intervalo de confianza es:

$$(\bar{x} - Error, \bar{x} + Error) = (150 - 4.9; 150 + 4.9) = (145.1; 154.9)$$

b) Con un nivel de confianza de 0,9 calculamos $z_{\alpha/2}$

$$1-\alpha = 0.9 \Rightarrow \alpha = 0.1 \Rightarrow \alpha/2 = 0.05 \Rightarrow 1-\alpha/2 = 0.95 \Rightarrow z_{\alpha/2} = 1.645$$

Utilizamos la fórmula del error y hacemos que sea de 3.5 g/km.

0.9292

0.9418

0.9429

$$Error = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \Rightarrow 3.5 = 1.645 \cdot \frac{25}{\sqrt{n}} \Rightarrow 3.5\sqrt{n} = 1.645 \cdot 25 \Rightarrow n = \left(\frac{1.645 \cdot 25}{3.5}\right)^2 = 138.0625$$

Como el tamaño debe ser entero y mayor que la cifra obtenida, tenemos que el tamaño mínimo de la muestra debe ser de 139 vehículos.

c) Con un nivel de confianza del 86 % calculamos $z_{\alpha/2}$

0.9345

0.9357

Si se obtuviera el mismo intervalo de confianza del apartado a) tendría el mismo error, que tenía un valor de 4.9 g/km.

0.9370

0.9382

0.9394

0.9406

$$Error = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$
 \Rightarrow $4.9 = 1.475 \cdot \frac{\sigma}{\sqrt{75}} \Rightarrow \sigma = \frac{4.9 \cdot \sqrt{75}}{1.475} \approx 28.77$

La desviación típica es de 28.77 g/km.

0.9332

A3. La producción de energía en Kw de un panel solar, orientado hacia el sur, durante las horas del día, viene dada por la función:

$$P(t) = \begin{cases} -\frac{4}{25}(t-7)(t-17) & \text{si } 7 \le t \le 14\\ \frac{3}{25}(-7t+126) & \text{si } 14 < t \le 18 \end{cases}$$

- a) Justificando las respuestas, explica si es continua y derivable. (0,75 puntos)
- b) Estudia el crecimiento y decrecimiento de la producción de energía durante el día. ¿A qué hora se alcanzó la máxima producción de energía y a cuánto ascendió? (1 punto)
- c) ¿A qué hora, se superaron por primera vez los 3 Kw de producción? (0,75 puntos)
- a) La función en los intervalos [7,14) y (14,18] son funciones polinómicas que son continuas. Estudiamos la continuidad en t = 14.

$$P(14) = -\frac{4}{25}(14-7)(14-17) = 3.36$$

$$\lim_{t \to 14^{-}} P(t) = \lim_{t \to 14^{-}} -\frac{4}{25}(t-7)(t-17) = 3.36$$

$$\lim_{t \to 14^{+}} P(t) = \lim_{t \to 14^{+}} \frac{3}{25}(-7t+126) = \frac{3}{25}(-7\cdot14+126) = 3.36$$

Como $P(14) = \lim_{t \to 14^-} P(t) = \lim_{t \to 14^+} P(t) = 3.36$ la función es continua en t = 14. La función es continua en [7, 18].

La función en los intervalos [7,14) y (14,18] son funciones polinómicas que son derivables. La derivada de la función en $[7,14) \cup (14,18]$ tiene la expresión:

$$P(t) = \begin{cases} -\frac{4}{25}(t-7)(t-17) = -\frac{4}{25}(t^2 - 24t + 119) & \text{si } 7 \le t \le 14 \\ \frac{3}{25}(-7t + 126) & \text{si } 14 < t \le 18 \end{cases}$$

$$\Rightarrow P'(t) = \begin{cases} -\frac{4}{25}(2t - 24) & \text{si } 7 \le t < 14\\ \frac{3}{25}(-7) = \frac{-21}{25} & \text{si } 14 < t \le 18 \end{cases}$$

Calculamos las derivadas laterales en t = 14 y comparamos su valor.

$$P'(14^{-}) = \lim_{t \to 14^{-}} P'(t) = \lim_{t \to 14^{-}} -\frac{4}{25}(2t - 24) = -\frac{4}{25}(28 - 24) = \frac{-16}{25}$$

$$P'(14^+) = \lim_{t \to 14^+} P'(t) = \lim_{t \to 14^+} \frac{-21}{25} = \frac{-21}{25}$$

Como las derivadas laterales tienen valores distintos la función no es derivable en t = 14.

La función es derivable en $[7,14) \cup (14,18]$.

b) Buscamos los puntos críticos de la función P(t).

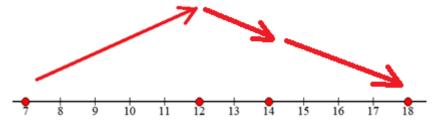
$$P'(t) = \begin{cases} -\frac{4}{25}(2t - 24) & \text{si } 7 \le t < 14 \\ \frac{3}{25}(-7) = \frac{-21}{25} & \text{si } 14 < t \le 18 \\ P'(t) = 0 \end{cases} \Rightarrow \begin{cases} -\frac{4}{25}(2t - 24) = 0 \rightarrow 2t - 24 = 0 \rightarrow t = 12 \in [7, 14) \\ \frac{3}{25}(-7) = \frac{-21}{25} = 0 \rightarrow \text{iIm posible!} \end{cases}$$

Estudiamos el signo de la derivada en el intervalo [7, 12). Tomamos t = 10 y la derivada vale $P'(10) = -\frac{4}{25}(20-24) = \frac{16}{25} > 0$. La función crece en [7, 12).

Estudiamos el signo de la derivada en el intervalo (12, 14). Tomamos t=13 y la derivada vale $P'(13) = -\frac{4}{25}(26-24) = \frac{-8}{25} < 0$. La función decrece en (12, 14).

Estudiamos el signo de la derivada en el intervalo (14, 18). Tomamos t = 15 y la derivada vale $P'(15) = -\frac{21}{25} < 0$. La función decrece en (14, 18).

La función sigue el esquema siguiente.



La producción de energía crece entre las 7 y las 12 horas y decrece entre las 12 y las 18 horas. La función tiene un máximo relativo en t = 12. Mirando la evolución de la función este es un máximo absoluto. Tenemos que $P(12) = -\frac{4}{25}(12-7)(12-17) = 4$.

La producción máxima de energía se produce a las 12 horas siendo esta de 4 kw.

c) Igualamos la función a 3 y buscamos el valor de t.

$$P(t) = 3 \Rightarrow \begin{cases} -\frac{4}{25} (t^2 - 24t + 119) = 3 \to t^2 - 24t + 119 = \frac{-75}{4} \to t^2 - 24t + 137.75 \to \\ \to t = \frac{24 \pm \sqrt{(-24)^2 - 4(1)(137.75)}}{2} = \frac{24 \pm 5}{2} = \begin{cases} \frac{24 + 5}{2} = 14.5 \notin [7, 14] \\ \frac{24 - 5}{2} = 9.5 \in [7, 14] \end{cases}$$

$$\frac{3}{25} (-7t + 126) = 3 \to -7t + 126 = \frac{75}{3} \to -7t = -101 \to t = \frac{101}{7} \approx 14.43 \in (14, 18]$$

La producción de energía alcanza los 3 kw por primera vez a las 9.5 horas, como la potencia producida va creciendo hasta las 12 horas se supera a partir de las 9 horas y media.

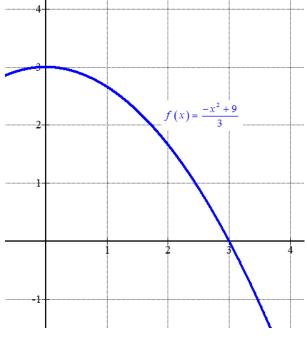
- **B3.** En un muro del paseo marítimo se debe recubrir con lona la superficie determinada por $y \le \frac{-x^2+9}{3}$, $x \ge 0$ e $y \ge 0$, (las unidades se miden en metros).
- a) Representar dicha superficie. (0,75 puntos)
- b) ¿Cuántos metros cuadrados tiene la superficie? (1,25 puntos)
- c) El precio del metro cuadrado de lona es de 20 euros y, al hacer la instalación se debe usar un 15% más de la superficie a cubrir. Además, el coste de instalación es de 5 euros por metro cuadrado de lona adquirida. ¿Cuánto cuesta recubrir la superficie? (0,5 puntos)
- a) Dibujamos la gráfica de la función $f(x) = \frac{-x^2 + 9}{3}$.

Igualamos la derivada a cero para encontrar las coordenadas del vértice de la parábola.

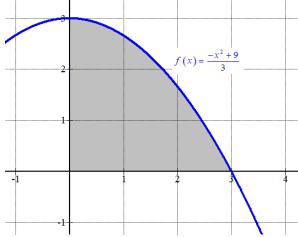
$$\begin{cases} f'(x) = \frac{-2x}{3} \\ f'(x) = 0 \end{cases} \Rightarrow \frac{-2x}{3} = 0 \Rightarrow x = 0$$

Como $f'(x) = \frac{-2x}{3} \Rightarrow f''(x) = \frac{-2}{3} \Rightarrow f''(0) = \frac{-2}{3} < 0$ la función tiene un máximo relativo en x = 0. Hacemos una tabla de valores y representamos la gráfica.

x	$f(x) = \frac{-x^2 + 9}{3}$
0	3
1	8/3
2	5/3
3	0



La superficie a cubrir es la zona del primer cuadrante situada bajo la gráfica.



b) Obtenemos el valor de la superficie a cubrir calculando la integral definida de la función entre 0 y 3.

$$Area = \int_0^3 f(x) dx = \int_0^3 \frac{-x^2 + 9}{3} dx = \frac{1}{3} \int_0^3 -x^2 + 9 dx = \frac{1}{3} \left[-\frac{x^3}{3} + 9x \right]_0^3 =$$

$$= \frac{1}{3} \left[\left[-\frac{3^3}{3} + 9 \cdot 3 \right] - \left[-\frac{0^3}{3} + 9 \cdot 0 \right] \right] = \frac{18}{3} = \boxed{6m^2}$$

La superficie es de 6 metros cuadrados.

- c) Se debe comprar un 15% más de lona, es decir 6.0.15 = 0.9 metros cuadrados más. Lo que hace que debamos comprar 6.9 metros cuadrados de lona.
 - El metro cuadrado de lona cuesta 20 € más los 5 euros de instalación.
 - Comprar y colocar la lona necesaria para cubrir la superficie cuesta $6.9 \cdot 25 = 172.5$ euros.

- **A4**. En una fábrica, en la que se producen mesas y estanterías, se dispone de un total de 150 metros cuadrados de madera y 90 horas de mano de obra. Para fabricar una mesa se necesitan 3 metros cuadrados de madera y 1 hora de mano de obra y para fabricar una estantería se necesitan 4 metros cuadrados de madera y 3 horas de mano de obra. La fábrica obtiene un beneficio de 160 € por la producción de cada mesa, y de 225 € por cada estantería.
- a) Formular el correspondiente problema de programación lineal (0,75 puntos).
- b) Representar la región factible e indicar cuáles son sus vértices. (1 punto)
- c) ¿Cuántos muebles de cada tipo se deben fabricar para maximizar el beneficio? ¿Cuál es el valor de dicho beneficio? (0,75 puntos)
- a) Llamamos x = número de mesas e y = número de estanterías.
 Hacemos una tabla para ordenar la información ofrecida en el ejercicio.

	Metros cuadrados de madera	Horas de trabajo	Beneficios
Nº de mesas (x)	3x	X	160x
Nº de estanterías (y)	4y	3y	225y
TOTAL	3x+4y	x+3y	160x + 225y

La función que deseamos maximizar son los beneficios B(x, y) = 160x + 225y sometida a las restricciones siguientes.

Las cantidades deben ser positivas $\rightarrow x \ge 0$; $y \ge 0$

"Se dispone de un total de 150 metros cuadrados de madera y 90 horas de mano de obra" \Rightarrow $3x+4y \le 150$; $x+3y \le 90$

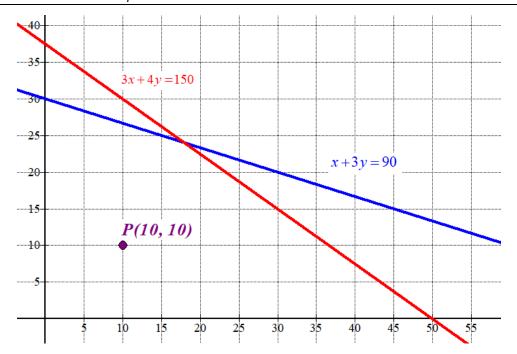
Reunimos las restricciones en un sistema de inecuaciones:

$$3x + 4y \le 150$$

$$x + 3y \le 90$$

$$x \ge 0; y \ge 0$$

b) Representamos las rectas que delimitan la región factible. Para ello obtengo una tabla de valores para cada recta asociada a cada inecuación.



Como las restricciones son
$$x+3y \le 90$$

 $x \ge 0$; $y \ge 0$ la región factible es la región del primer cuadrante

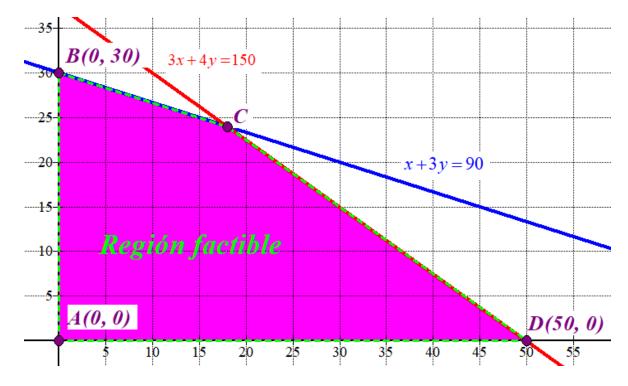
situada por debajo de las rectas roja y azul.

Comprobamos que el punto P(10, 10) perteneciente a esta región cumple todas las restricciones.

$$3.10 + 4.10 \le 150$$

 $10 + 3.10 \le 90$
 $10 \ge 0$; $10 \ge 0$ | Se cumplen todas!

Coloreamos de rosa la región factible en el siguiente dibujo.



Determinamos las coordenadas del vértice C resolviendo el sistema de ecuaciones correspondiente.

$$C \rightarrow \begin{cases} 3x + 4y = 150 \\ x + 3y = 90 \end{cases} \Rightarrow \begin{cases} 3x + 4y = 150 \\ x = 90 - 3y \end{cases} \Rightarrow 3(90 - 3y) + 4y = 150 \Rightarrow 270 - 9y + 4y = 150 \Rightarrow$$

$$\Rightarrow -5y = -120 \Rightarrow y = \frac{120}{5} = 24 \Rightarrow x = 90 - 72 = 18 \Rightarrow C(18, 24)$$

Los vértices de la región factible tienen coordenadas A(0, 0), B(0, 30), C(18, 24) y D(50, 0).

c) Valoramos la función beneficio B(x, y) = 160x + 225y en cada vértice en busca del valor máximo.

$$A(0, 0) \Rightarrow B(0, 0) = 0$$

 $B(0, 30) \Rightarrow B(0, 30) = 160 \cdot 0 + 225 \cdot 30 = 6750$
 $C(18, 24) \Rightarrow B(18, 24) = 160 \cdot 18 + 225 \cdot 24 = 8280$ ¡Máximo!
 $D(50, 0) \Rightarrow B(50, 0) = 160 \cdot 50 + 225 \cdot 0 = 8000$

El beneficio máximo es de 8280 € y se consigue en el vértice C(18, 24), que significa fabricar 18 mesas y 24 estanterías.

- **B4.** Una jugadora de ajedrez ha conseguido premios en 51 de los torneos en los que ha participado a lo largo de su vida. Los torneos han sido locales, nacionales e internacionales. El número de torneos locales en los que ha jugado ha sido el doble de los nacionales; además por cada cinco torneos nacionales ha participado en dos internacionales. Los torneos en los que ha conseguido premio representan un 30% de todos los torneos en los que ha participado.
- a) Plantear el correspondiente sistema de ecuaciones. (1,5 puntos)
- b) ¿En cuántos torneos de cada clase ha participado esta jugadora? (1 punto)
- a) Llamamos "x" al número de torneos locales en los que ha participado, "y" a los torneos nacionales y "z" a los torneos internacionales.

"El número de torneos locales en los que ha jugado ha sido el doble de los nacionales" \rightarrow x = 2y.

"Una jugadora de ajedrez ha conseguido premios en 51 de los torneos en los que ha participado a lo largo de su vida. Los torneos en los que ha conseguido premio representan un 30% de todos los torneos en los que ha participado" \rightarrow 0.30(x+y+z)=51.

"Por cada cinco torneos nacionales ha participado en dos internacionales" ->

nacionales internacionales
$$5 \xrightarrow{\qquad \qquad } 2 \\ y \xrightarrow{\qquad \qquad } z$$
 $\Rightarrow 5z = 2y$

Reunimos las ecuaciones en un sistema.

$$\begin{cases}
 x = 2y \\
 0.30(x+y+z) = 51 \\
 5z = 2y
 \end{cases}
 \Rightarrow x+y+z = \frac{51}{0.3} = 170$$

b) Resolvemos el sistema.

$$x = 2y$$

$$x + y + z = 170$$

$$z = \frac{2}{5}y$$

$$\Rightarrow 2y + y + \frac{2}{5}y = 170 \Rightarrow 3.4y = 170 \Rightarrow \boxed{y = \frac{170}{3.4} = 50} \Rightarrow \boxed{\boxed{x = 2 \cdot 50 = 100}}$$

$$z = \frac{2}{5}y$$

La jugadora ha participado en 100 torneos locales, 50 nacionales y 20 internacionales. Esto hace un total de 170 torneos habiendo conseguido premio en el 30 %, es decir, $0.30\cdot170 = 51$. Los resultados parecen correctos.