Ecuaciones Polinómicas de grado superior a dos

Para resolverlas:

- Igualamos el polinomio a cero p(x)=0
- Siempre que no tengamos término independiente, lo que haremos es extraer factor común.
- Aplicamos la regla de Ruffini
- Las dos últimas raíces las calcularemos mediante la ecuación de 2ºGrado.

<u>Ejemplo</u>

Solución: x=-1, x=1, x=2 y x=3

- Igualamos el polinomio a cero p(x)=0
 En nuestro caso, la ecuación está igualada a cero.
- NO podremos extraer factor común debido a que tenemos término independiente (-6)
- Aplicamos la regla de Ruffini

• Las dos últimas raíces las calcularemos mediante la ecuación de 2ºGrado.

$$x^{2} - 5x + 6 = 0 \rightarrow x = \frac{5 \pm \sqrt{25 - 24}}{2} = \begin{cases} x_{1} = 2\\ x_{2} = 3 \end{cases}$$

• Por lo tanto las 4 soluciones serán: $\begin{cases} x_1 = -1 \\ x_2 = 1 \\ x_3 = 2 \\ x_4 = 3 \end{cases}$

Ejercicios Propuestos

a)
$$3x^3 - 18x^2 + 27x - 12 = 0$$
 Solución: $x_1 = 1$ y $x_2 = 4$

b)
$$16x^4 + 20x^3 - 34x^2 - 14x + 12 = 0$$
 Solución: $x_1 = -2$, $x_2 = \frac{-3}{4}$, $x_3 = \frac{1}{2}$ y $x_4 = 1$

c)
$$2(x+1)^4 - 8x^3 = 8(x+3) - 8$$
 Solución: $x_1 = -1$ y $x_2 = 1$

d)
$$2x^4 - \frac{26}{3}x^3 + \frac{22}{3}x^2 + \frac{10}{3}x = 4$$
 Solución: $x_1 = -\frac{2}{3}, x_2 = 1$ y $x_4 = 3$

e)
$$5x^2(x+1) = 5x(x+1)$$
 Solución: $x_1 = -1, x_2 = 0$ y $x_3 = 1$

f)
$$x^2(x^4 + x^2) = 2x^3(x^2 + 1)$$
 Solución: $x_1 = -2, x_2 = \frac{-3}{4}, x_3 = \frac{1}{2}y x_4 = 1$