1° ESO

TEMA 13

LONGITUDES Y ÁREAS

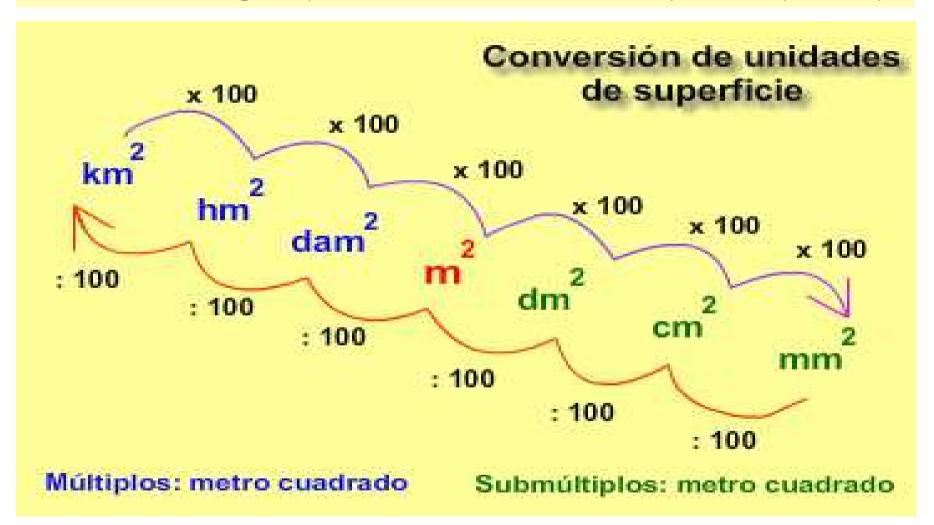
1.- <u>PERÍMETRO Y ÁREA DE UNA FIGURA PLANA</u> <u>Perímetro de una figura</u>

El **perímetro** de una figura plana es la suma de las longitudes de sus lados.

Esa suma representa una medida de longitud. Por ello, las unidades utilizadas son el **metro** y todos sus múltiplos y submúltiplos.

1.- PERÍMETRO Y ÁREA DE UNA FIGURA PLANA Área de una figura

El **área** de una figura plana es la medida de la superficie que ocupa.



Tareas Ejercicios: 1, 2, 3, 46 y 47

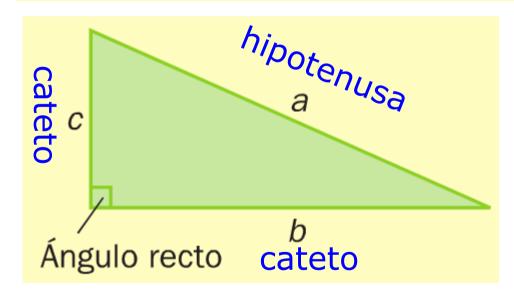
2.- MEDIDAS INDIRECTAS: TEOREMA DE PITÁGORAS

Las **medidas indirectas** son las que no se pueden realizar directamente. Para hallarlas utilizamos relaciones entre estas medidas desconocidas y otras conocidas.

Una de las relaciones que se utilizan para el cálculo de medidas indirectas es el teorema de Pitágoras.

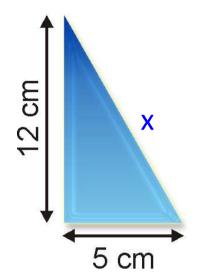
Teorema de Pitágoras

En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.



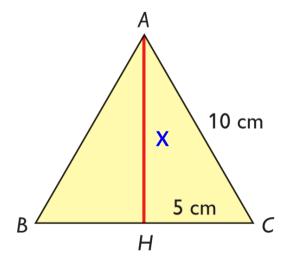
$$a^2 = b^2 + c^2$$

2.- <u>MEDIDAS INDIRECTAS: TEOREMA DE PITÁGORAS</u> <u>Aplicaciones del teorema de Pitágoras</u>



$$x^{2} = 12^{2} + 5^{2} \rightarrow x^{2} = 144 + 25 \rightarrow x^{2} = 169$$

 $x = \sqrt{169} \rightarrow x = 13 \text{ cm}$

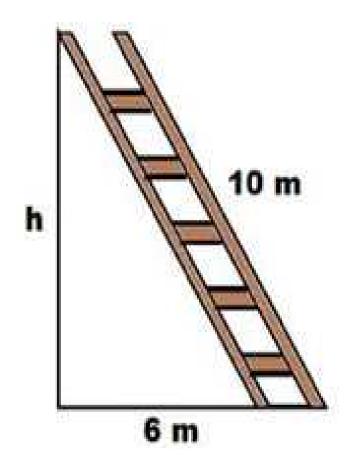


10 cm
$$10^2 = 5^2 + x^2 \rightarrow 100 = 25 + x^2$$

 $75 = x^2 \rightarrow x = \sqrt{75} \rightarrow x \approx 8,66 \text{ cm}$

2.- MEDIDAS INDIRECTAS: TEOREMA DE PITÁGORAS

Aplicaciones del teorema de Pitágoras (continuación)

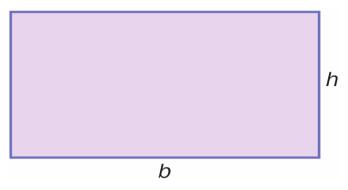


$$10^2 = 6^2 + h^2 \rightarrow 100 = 36 + h^2$$

$$64 = x^2 \longrightarrow x = \sqrt{64} \longrightarrow x = 8 \text{ m}$$

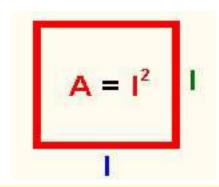
3, 4 y 5.- ÁREA DEL RECTÁNGULO, CUADRADO, PARALELOGRAMO, TRIÁNGULO Y TRAPECIO

Área del rectángulo y del cuadrado



El **área del rectángulo** es igual al producto de su base por su altura, expresadas en la misma unidad.

$$A = \mathsf{base} \cdot \mathsf{altura} = b \cdot h$$



El **área del cuadrado** es igual al producto de su lado por sí mismo, es decir, al lado elevado al cuadrado.

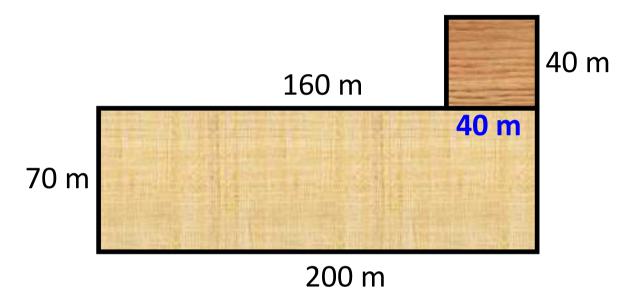
$$A = l \cdot l = l^2$$

PROFESOR: RAFAEL NÚÑEZ NOGALES

3, 4 y 5.- ÁREA DEL RECTÁNGULO, CUADRADO, PARALELOGRAMO, TRIÁNGULO Y TRAPECIO

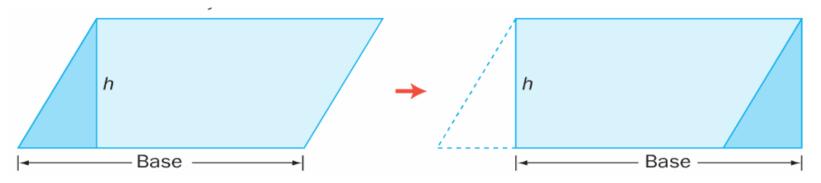
Área del rectángulo y del cuadrado (Ejemplo)

Averigua el precio de esta finca a razón de 10,50 €/m²



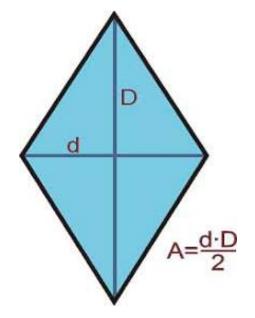
A(finca) =
$$200 \cdot 70 + 40^2 = 14000 + 1600 = 15600 \text{ m}^2$$

3, 4 y 5.- <u>ÁREA DEL RECTÁNGULO, CUADRADO,</u> PARALELOGRAMO, TRIÁNGULO Y TRAPECIO <u>Área del paralelogramo y del rombo</u>



El **área del paralelogramo** es igual a la base por la altura, expresadas en la misma unidad.

$$A = \mathsf{base} \cdot \mathsf{altura} = b \cdot h$$

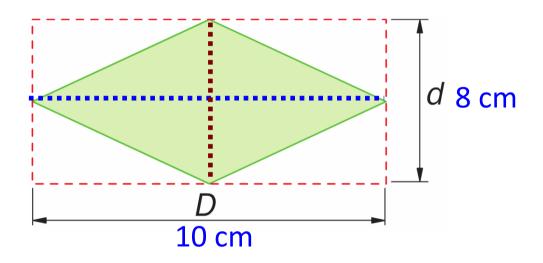


El **área de un rombo** es igual a su diagonal menor por su diagonal mayor partido por dos

$$A(rombo) = \frac{d \cdot D}{2}$$

3, 4 y 5.- <u>ÁREA DEL RECTÁNGULO, CUADRADO,</u> <u>PARALELOGRAMO, TRIÁNGULO Y TRAPECIO</u> <u>Área del rombo (Ejemplo)</u>

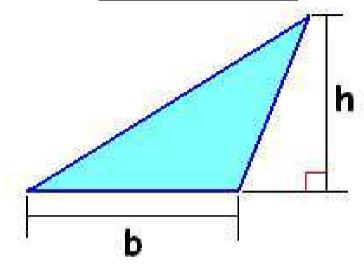
Halla el área de un rombo cuyas diagonales miden 10 y 8 centímetros, respectivamente.



A(rombo) =
$$\frac{d \cdot D}{2} = \frac{8 \cdot 10}{2} = 40 \text{ cm}^2$$

3, 4 y 5.- <u>ÁREA DEL RECTÁNGULO, CUADRADO,</u> PARALELOGRAMO, TRIÁNGULO Y TRAPECIO

Área del triángulo



El **área del triángulo** es igual a la mitad del producto de la base por la altura, expresadas en la misma unidad.

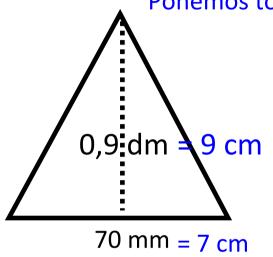
$$A = \frac{\mathsf{base} \cdot \mathsf{altura}}{\mathsf{2}} = \frac{b \cdot \mathsf{h}}{\mathsf{2}}$$

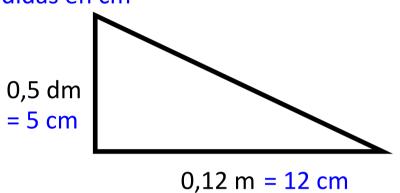
3, 4 y 5.- ÁREA DEL RECTÁNGULO, CUADRADO, PARALELOGRAMO, TRIÁNGULO Y TRAPECIO

Área del triángulo (Ejemplo)

Averigua qué triángulo tiene mayor superficie

Ponemos todas las medidas en cm





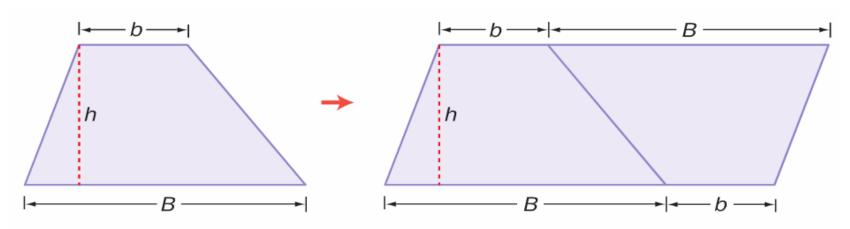
$$A(triángulo) = \frac{base . altura}{2}$$

A(triángulo isósceles) =
$$\frac{7.9}{2}$$
 = 31,5 cm²

A(triángulo rectángulo) =
$$\frac{12.5}{2}$$
 = 30 cm²

El de mayor área es el triángulo isósceles

3, 4 y 5.- <u>ÁREA DEL RECTÁNGULO, CUADRADO,</u> PARALELOGRAMO, TRIÁNGULO Y TRAPECIO <u>Área del trapecio</u>



El área del paralelogramo es:

$$A = (B + b) \cdot h$$

Y el área del trapecio es la mitad del área del paralelogramo.

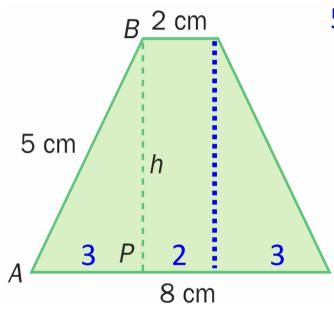
$$A(trapecio) = \frac{(B + b) \cdot h}{2}$$

El **área de un trapecio** es igual a la suma de sus bases multiplicada por la altura y dividida entre dos

3, 4 y 5.- <u>ÁREA DEL RECTÁNGULO, CUADRADO,</u> <u>PARALELOGRAMO, TRIÁNGULO Y TRAPECIO</u>

Área del trapecio (Ejemplo)

Primero se calcula h por el teorema de Pitágoras:



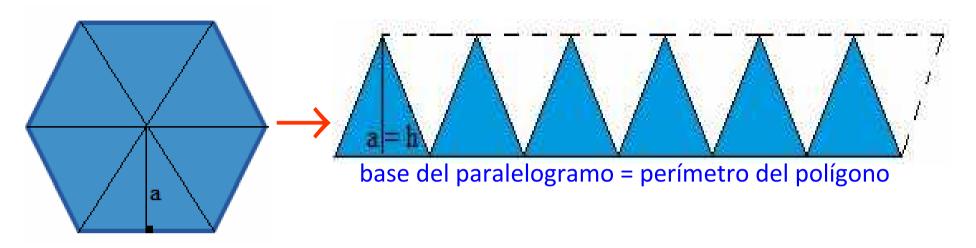
$$5^2 = 3^2 + h^2 \rightarrow 25 = 9 + h^2$$

$$16 = h^2 \rightarrow h = \sqrt{16} \rightarrow h = 4 \text{ cm}$$

$$A(trapecio) = \frac{(B + b) \cdot h}{2}$$

A(trapecio) =
$$\frac{(8+2) \cdot 4}{2}$$
 = 20 cm²

6 y 7.- ÁREA DE POLÍGONOS REGULARES E IRREGULARES



$$A(polígono regular) = \frac{A(paralelogramo)}{2} = \frac{perímetro . apotema}{2}$$

A(polígono regular) =
$$\frac{P \cdot a}{2}$$

El **área de un polígono regular** es igual al producto del perímetro por la apotema dividido entre dos

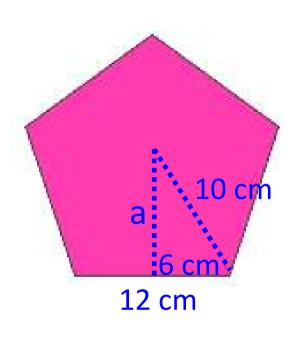
El **área de un polígono irregular** se puede calcular por **triangula- ción** o por **cuadriculación**.

PROFESOR: RAFAEL NÚÑEZ NOGALES

6 y 7.- <u>ÁREA DE POLÍGONOS REGULARES E IRREGULARES</u> <u>Área del polígono regular (Ejemplo)</u>

Calcula la superficie de un pentágono regular de 12 cm de lado y 1 dm de radio

Ponemos el radio en cm: 1 dm = 10 cm



A(polígono regular) =
$$\frac{P \cdot a}{2}$$

La apotema, a, se calcula por el teorema de Pitágoras:

$$10^2 = 6^2 + a^2 \rightarrow 100 = 36 + a^2$$

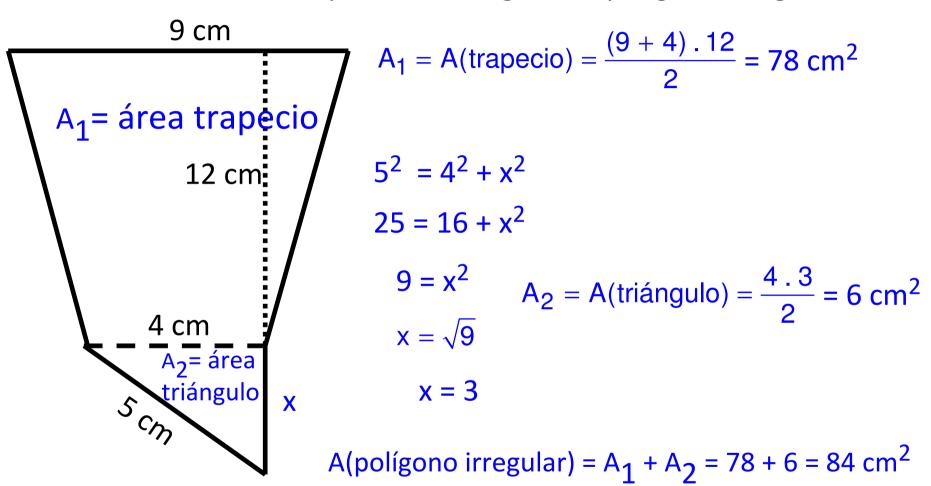
$$64 = a^2 \rightarrow a = \sqrt{64} \rightarrow a = 8 \text{ cm}$$

A(pentágono regular) =
$$\frac{60.8}{2}$$
 = 240 cm²

6 y 7.- ÁREA DE POLÍGONOS REGULARES E IRREGULARES

Área de un polígono irregular (Ejemplo)

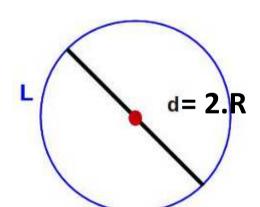
Calcula la superficie del siguiente polígono irregular:



Tareas Ejercicios: 25, 26, 62 y 82

8 y 9.- LONGITUDES Y ÁREAS DE FIGURAS CIRCULARES Longitud de la circunferencia

Al dividir la longitud de una circunferencia entre su diámetro siempre se obtiene el mismo número. A este número se le llamó pi. El número pi se representa con la letra griega π . El valor de π es, aproximadamente, 3,14



L: longitud de la circunferencia

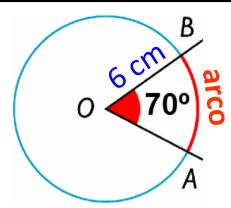
d: longitud del diámetro

$$\frac{L}{d} = \pi$$

Despejando la longitud, L, se obtiene: L = π . d = π .2.R

L(circunferencia) = $2 \cdot \pi \cdot R$

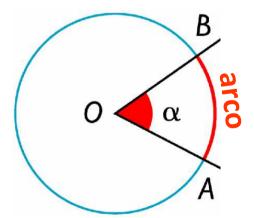
8 y 9.- LONGITUDES Y ÁREAS DE FIGURAS CIRCULARES Longitud de un arco de circunferencia



L(circunferencia) = 2 . π . R \cong 2 . 3,14 . 6 = 37,68 cm

$$\frac{37,68 \text{ cm}}{360^{\circ}} = \frac{\text{longitud del arco}}{70^{\circ}} \rightarrow \text{longitud del arco} = \frac{70^{\circ} \cdot 37,68}{360^{\circ}} \cong 7,33 \text{ cm}$$

Caso general

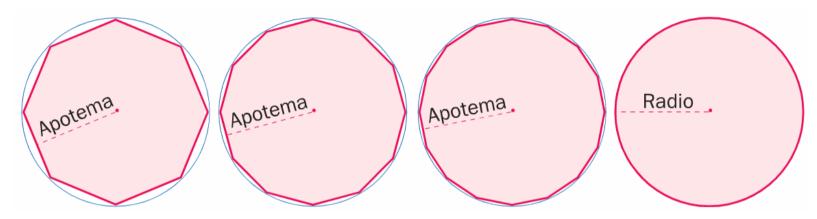


$$\frac{2 \cdot \pi \cdot R}{360^{\circ}} = \frac{arco}{\alpha^{\circ}}$$

$$arco = \frac{2 \cdot \pi \cdot R \cdot \alpha^{\varrho}}{360^{\varrho}}$$

8 y 9.- LONGITUDES Y ÁREAS DE FIGURAS CIRCULARES Área del círculo

Un círculo se puede considerar como un polígono regular de "infinitos lados"



El perímetro sería la longitud de la circunferencia y el radio sería la apotema

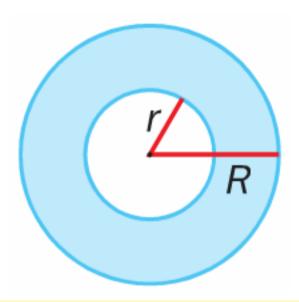
$$A(círculo) = \frac{perímetro . apotema}{2}$$

$$A(círculo) = \frac{longitud de la circunferencia . radio}{2}$$

$$A(circulo) = \frac{2 \cdot \pi \cdot R \cdot R}{2} \rightarrow A(circulo) = \frac{2 \cdot \pi \cdot R^2}{2}$$

$$A(circulo) = \pi . R^2$$

8 y 9.- LONGITUDES Y ÁREAS DE FIGURAS CIRCULARES Área de la corona circular

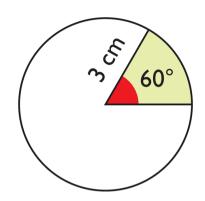


El área de una corona circular es igual a la diferencia de las áreas del círculo mayor y del círculo menor.

El área de la corona circular se puede hallar directamente usando la fórmula:

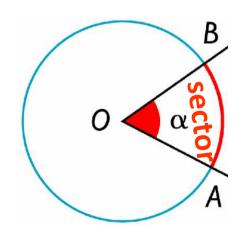
A(corona circular) =
$$\pi$$
.(R² – r²)

8 y 9.- LONGITUDES Y ÁREAS DE FIGURAS CIRCULARES Área del sector circular



A(círculo) =
$$\pi \cdot R^2 \cong 3,14 \cdot 3^2 = 28,26 \text{ cm}$$

$$\frac{28,26~\text{cm}}{360^{\circ}} = \frac{\text{área del sec tor}}{60^{\circ}} \rightarrow \text{área del sec tor} = \frac{60^{\circ} \cdot 28,26}{360^{\circ}} = 4,71~\text{cm}$$



Caso general

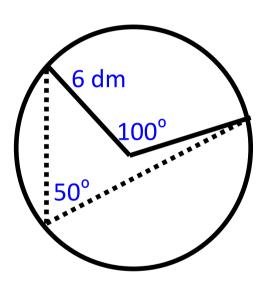
$$\frac{\pi \cdot R^2}{360^{\circ}} = \frac{\text{área del sec tor}}{\alpha^{\circ}}$$

A(sector circular) =
$$\frac{\pi \cdot R^2 \cdot \alpha^{\circ}}{360^{\circ}}$$

8 y 9.- LONGITUDES Y ÁREAS DE FIGURAS CIRCULARES

Longitud del arco y área del sector (Ejemplo)

En una circunferencia de 6 dm de radio, halla la longitud del arco abarcado por un ángulo inscrito de 50°. Calcula también el área del sector del ángulo central que corresponde a dicho ángulo.



arco =
$$\frac{2 \cdot \pi \cdot R \cdot \alpha^{\circ}}{360^{\circ}} = \frac{2 \cdot 3,14 \cdot 6 \cdot 100^{\circ}}{360^{\circ}}$$

 $arco \cong 10,47 dm$

A(sector) =
$$\frac{\pi \cdot R^2 \cdot \alpha^{\circ}}{360^{\circ}} = \frac{3,14 \cdot 6^2 \cdot 100^{\circ}}{360^{\circ}}$$

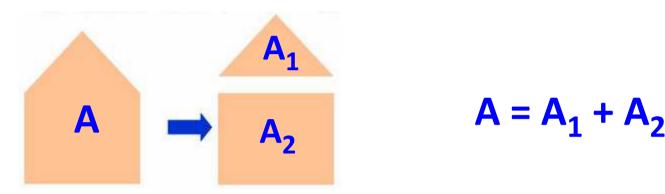
 $A(sector) = 31,4 dm^2$

Tareas Ejercicios: 29, 30, 31, 32, 36, 37, 66, 70, 71 y₂**7**8

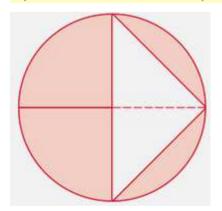
PROFESOR: RAFAEL NÚÑEZ NOGALES

10 y 11.- CÁLCULO DE ÁREAS POR COMPOSICIÓN Y POR DESCOMPOSICIÓN

Si una figura está compuesta por polígonos o figuras circulares, su área puede calcularse sumando las áreas de todos los elementos.

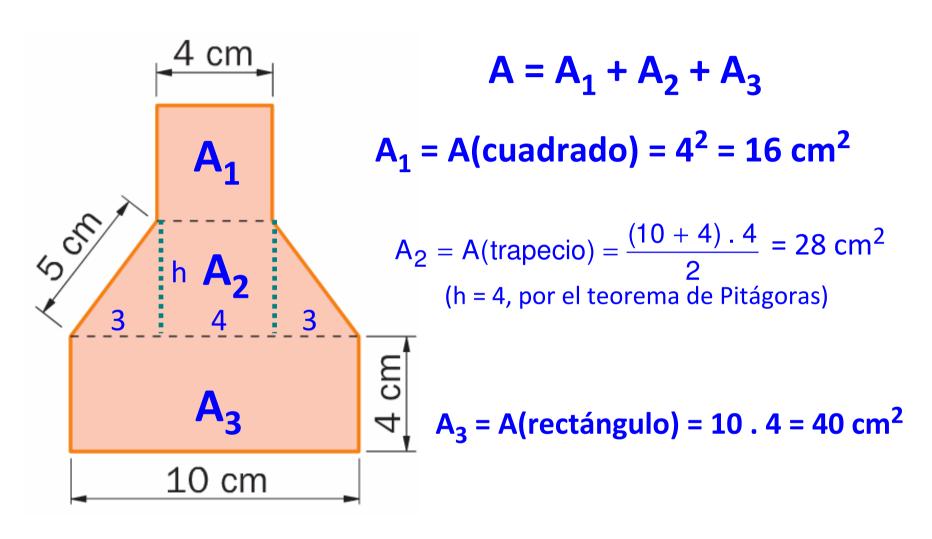


El área de una figura compuesta por un polígono o un círculo al que se le ha quitado otro se calcula restando áreas.



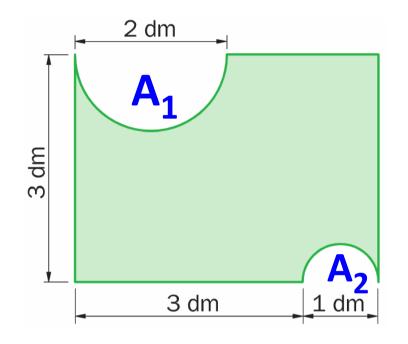
A(zona coloreada) = A(círculo) - A(triángulo)

10 y 11.- <u>CÁLCULO DE ÁREAS POR COMPOSICIÓN Y POR DESCOMPOSICIÓN</u> <u>Ejemplo 1</u>



$$A = 16 + 28 + 40 = 84 \text{ cm}^2$$

10 y 11.- <u>CÁLCULO DE ÁREAS POR COMPOSICIÓN Y POR DESCOMPOSICIÓN</u> <u>Ejemplo 2</u>



 $A(zona\ coloreada) =$ = $A(rectángulo) - A_1 - A_2$

A(rectángulo) = $4.3 = 12 \text{ dm}^2$

 A_1 = A(semicírculo de radio 1) = $(\pi . 1^2) : 2 \cong 1,57 \text{ dm}^2$

 $A_2 = A(\text{semicirculo de radio } 0.5) = (\pi . 0.5^2) : 2 \cong 0.39 \text{ dm}^2$

 $A(zona\ coloreada) = 12 - 1,57 - 0,39 = 10,04\ dm^2$

Tareas Ejercicios: 40, 41, 43 y autoevaluación Pág. 241:27

PROFESOR: RAFAEL NÚÑEZ NOGALES