Operaciones Algebraicas

(Soluciones en página 3)

1. Expresa en lenguaje algebraico las siguientes frases:

- a) Tres números naturales consecutivos. f) Dos números impares consecutivos.
- b) Un número par. g) El triple de un número impar.
- c) El número par siguiente a 2n. h) El cuadrado de la suma de dos números.
- i) La suma de los cubos de dos números. d) Tres números pares consecutivos.
- e) Un número impar. j) La diferencia de un número y de su cuadrado.

2. Calcula los valores numéricos de las siguientes expresiones algebraicas para los valores de las letras que se indican.

- para x = -2f) (2a - b) / c para a=2, b=5, c= 3/4 a) 2 x
- b) 7x 8 para x = 4g) 2x (m - n) para $x = \frac{1}{2}$, m = 3, n = -8
- c) $(2x+3)^2$ para x=-1h) $5x - \frac{3}{4}$ para x = 2/4
- d) $(2x + c)^2$ para x = -1 c = -2 i) 6(a b)para a = 3, b = 8
- e) 3a 2b c para a = -4, b = -5, c = 1/2para $m = \frac{3}{4}$, n = -2, c = 5j) mn – mc

3. Resuelve las siguientes sumas de monomios y polinomios

- a) $2x^2b + 3x^2b 6x^2b =$ f) $6m^3 + 8m - 4m^3 + 12m =$
- b) 6ab 7mn + 8ab =g) $7a^5b - 4ab^2 =$
- c) $6x^2 + 12x^2m^2 4m^2x^2 =$ h) $10xm - 6m^4 - 9mx =$
- i) $14 b^6 t 16 b^6 t + 3 b^6 t =$ d) $5ax^3 - 2ax^3 - 8ax^3 =$
- e) $6ab 12 a^3b^3 + 8ab + 14a^3b^3 =$ i) $8v^4 - 6v + 10v^4 - 14v =$

4. Resuelve los siguientes productos de polinomios

- a) $(a + 6b^2) (a 4b + 2x) =$ e) $(2x^2t - 6x^3t)(3x^2 + 4x - 3) =$
- b) $(3x^2y 6x^3y)(3x^2y 2xy) =$ f) $(6x + 3 2x^4)(4x + 3x^2 1) =$
- c) $(3xy + y 4)(4x^2 6x) =$ g) $(\frac{3}{4}x^2 + \frac{2}{5}x)(3x - 6) =$
- d) (x + y) (z t) =h) $(x^3a^3 - 6a)(xa - 7a) =$

5. Resuelve los siguientes cocientes de polinomios

- a) $(2x^4c-6x^3): 2x^2 =$ d) $(x^2 - 7x^3m^2)$: 2xm =
- b) $(x^2a 6x^3a^2b 4x^3a) : x^2a =$ e) $(x^3y^2z 8x^3yz) : 8xyz =$ c) $(3x^2y 18x^3 + 9x^2y^2d) : (-3x^2y) =$ f) $(9x^2at^2 4x^3a^3m^4 7x^2a) : 2x^2a =$

6. Calcula directamente las siguientes potencias y productos

a)
$$(x+4)^2 =$$

b)
$$(2x + 3y)^2 =$$

c)
$$(x^2 + y^2)^2 =$$

d)
$$(5x - 6y)^2 =$$

e)
$$(9-2y^2)^2 =$$

f)
$$(1/4 - 3/5 x)^2 =$$

g)
$$(1/2x - 2y)^2 =$$

h)
$$(a + b) (a - b) =$$

i)
$$(3/4 - y^2)(3/4 + y^2) =$$

j)
$$(2x+8)(2x-8)=$$

k)
$$(y^4 + x^3)(y^4 - x^3) =$$

1)
$$(2x^3 - 3y^2) =$$

7. Expresa las siguientes diferencias de cuadrados como productos

a)
$$p^2 - t^2 =$$

b)
$$4x^2 - 9y^2 =$$

c)
$$c^2 - 16 =$$

d)
$$100 - 49 x^2 =$$

e)
$$t^6 - y^4 =$$

f)
$$25x^8 - 16y^6 =$$

g)
$$9x^2 - 1 =$$

h)
$$1 - y^{10} =$$

EJERCICIOS EXPRESIONES ALGEBRAICAS **SOLUCIONES**

1. I	Expresa en lenguaje algebraico las	siguiente	es fras	ses:		
	x, x+1, x+2	f) 2:	x+1,	2x + 3		
	2x	g) $3(x+1)$				
c)	2n + 2	h) <i>(</i> :		•		
d)	2n, 2n+2, 2n+4	i) x^i				
	2n+1	j) <i>x</i>				
2. (a) b) c) d) e) 3. I a) b) c) d)	Calcula los valores numéricos de la letras que se indican. $2 ext{ x } ext{ para } ext{ x = -2}$ $7 ext{ 7x - 8 } ext{ para } ext{ x = -1}$ $(2 ext{ x + 3})^2 ext{ para } ext{ x = -1}$ $(2 ext{ x + c})^2 ext{ para } ext{ x = -1 } ext{ c = -2}$ $3 ext{ a - 2b - c } ext{ para } ext{ a = -4, b = -5, c = 1/2}$ Resuelve las siguientes sumas de m $2 ext{ x^2b + 3x^2b - 6x^2b = } ext{ - x^2b }$ $6 ext{ 6ab - 7mn + 8ab = } ext{ 14ab + 6x^2 + 12x^2m^2 - 4m^2x^2 = } ext{ 6x^2 + 5ax^3 - 2ax^3 - 8ax^3 = -5ax^3}$	(-4) (20) (1) (16) (-5/2) nonomios - 7mn 8 x ² m ²	f) g) h) i) j) s y po	xpresiones al (2a - b) / c 2x (m - n) $5x - \frac{3}{4}$ 6 (a - b) mn - mc slinomios f) $6m^3$ g) $7a^5t$ h) $10x$ $14b^6t - 16b^6$	para a=2, b=5, c= $\frac{3}{4}$ para x= $\frac{1}{2}$, m=3, n=-8 para x= 2/4 para a= 3, b= 8 para m= $\frac{3}{4}$, n=-2, c= 5 $\frac{1}{4}$ + 8m - 4m ³ + 12m $\frac{1}{4}$ - 4ab ² = $\frac{1}{4}$ m - 6m ⁴ - 9mx = $\frac{1}{4}$ + $\frac{1}{4}$	$(-4/3)$ (11) $(7/4)$ (-30) $(-21/4)$ $= 2m^{3} + 20m$ $7a^{5}b - 4ab^{2}$ $xm - 6m^{4}$
e) $6ab - 12 a^3b^3 + 8ab + 14a^3b^3 = 14ab + 2 a^3b^3j$) $8y^4 - 6y + 10y^4 - 14y = 18y^4 - 20y$ 4. Resuelve los siguientes productos de polinomios a) $(a + 6b^2) (a - 4b + 2x) = a^2 - 4ab + 2ax + 6b^2a - 24b^3 + 12b^2x$ b) $(3x^2y - 6x^3y) (3x^2y - 2xy) = 21 x^4y^2 - 6x^3y^2 - 18x^5y^2$ c) $(3xy + y - 4) (4x^2 - 6x) = 12x^3y - 18x^2y + 4x^2y - 6xy - 1x^2 + 24x$ d) $(x + y) (z - t) = xz - xt + yz - yt$ e) $(2x^2t - 6x^3t) (3x^2 + 4x - 3) = -18x^4t + 26x^3t - 6x^2t - 18x^5t$ f) $(6x + 3 - 2x^4) (4x + 3x^2 - 1) = -6x^6 - 8x^5 + 2x^4 + 18x^3 + 33x^2 + 6x - 3$ g) $(\sqrt[3]{4}x^2 + 2/5x) (3x - 6) = 9/4x^3 - 66/20x^2 - 12/5x$ h) $(x^3a^3 - 6a) (xa - 7a) = x^4a^4 - 7x^3a^4 - 6a^2x - 42a^2$						
a) b)	Resuelve los siguientes cocientes de $(2x^4c - 6x^3) : 2x^2 = x^2c - (x^2a - 6x^3a^2b - 4x^3a) : x^2a = 1 - 6x - 6x^2y - 18x^3 + 9x^2y^2d) : (-3x^2y) = -1 + 6x^2$	3x xab – 4x	d) e)	$(x^2 - 7x^3m^2)$: $(x^3y^2z - 8x^3yz)$ $(9 x^2at^2 - 4x^3a^3)$	$2xm = \frac{1}{2}$ $2xm = \frac{1}{2}$ $8xyz = \frac{1}{2}$ $m^4 - 7x^5a = \frac{9}{2}$	½ x/m – 7/2 x²m (8x²y – x² 1² – 2xa²m² – 7/2 x

 $1/4x^2 - 2xy + 4y^2$

6. Calcula directamente las siguientes potencias y productos

g) $(x + 4)^2 = x^2 + 8x + 16$ g) $(1/2x - 2y)^2 =$

g) $(x + 4)^2 = x^2 + 6x + 10$ g) (1/2x - 2y) - 1/4x - 2xh) $(2x + 3y)^2 = 4x^2 + 12xy + 9y^2$ h) $(a + b)(a - b) = a^2 - b^2$ i) $(x^2 + y^2)^2 = x^4 + 2x^2y^2 + y^4$ i) $(3/4 - y^2)(3/4 + y^2) = 9/16 - y^4$ j) $(5x - 6y)^2 = 25x^2 - 60xy + 36y^2$ j) $(2x + 8)(2x - 8) = 4x^2 - 64$ k) $(9 - 2y^2)^2 = 81 - 36y^2 + 4y^4$ k) $(y^4 + x^3)(y^4 - x^3) = y^8 - x^6$ l) $(1/4 - 3/5 x)^2 = 1/16 - 6/20 x + x^2$ l) $(2x^3 - 3y^2) = 4x^6 - 9y^4$

7. Expresa las siguientes diferencias de cuadrados como productos

f)
$$p^2 - t^2 = (p + t)(p - t)$$

e)
$$t^6 - y^4 = (t^3 + y^2)(t^3 - y^2)$$

g)
$$4x^2 - 9y^2 = (2x + 3y)(2x - 3y)$$

f)
$$p^2 - t^2 = (p + t) (p - t)$$
 e) $t^6 - y^4 = (t^3 + y^2) (t^3 - y^2)$
g) $4x^2 - 9y^2 = (2x + 3y) (2x - 3y)$ f) $25x^8 - 16y^6 = (5x^4 + 4y^3) (5x^4 - 4y^3)$
h) $c^2 - 16 = (c + 4) (c - 4)$ g) $9x^2 - 1 = (3x + 1) (3x - 1)$
i) $100 - 49 x^2 = (10 + 7x) (10 - 7x)$ h) $1 - y^{10} = (1 + y^5) (1 - y^5)$

h)
$$c^2 - 16 = (c + 4)(c - 4)$$

g)
$$9x^2 - 1 = (3x + 1)(3x - 1)$$

i)
$$100-49 x^2 = (10 + 7x) (10 - 7x)$$

h)
$$1 - y^{10} = (1 + y^5) (1 - y^5)$$