TRABAJO DE VERANO DE 3º DE ESO

NOMBRE:	CURSO.

NÚMEROS REALES

1. Reduce a común denominador y ordena las fracciones siguientes:

2. Aplica las reglas de jerarquía para calcular y simplificar las siguientes expresiones:

$$a)\frac{2}{7} \cdot \frac{5}{4}$$
 $b)\frac{3}{8} \div \frac{10}{3}$ $c)\frac{3}{4} - \frac{1}{2} + \frac{5}{3}$ $d)\frac{3}{7} - 1 + \frac{2}{5}$ $e)\frac{10}{12} - 3 \cdot \frac{1}{5}$

$$(f)\frac{4}{3} \div \frac{1}{3} \cdot \frac{5}{2} \quad g)\left(\frac{4}{9} - \frac{1}{6}\right) \cdot 3$$

- 3. En el instituto, 5/8 de los alumnos eligen taller de matemáticas, el 48,5% están en cultura clásica y 9 de cada 16 alumnos se adscriben a Sociedad, cultura y religión. ¿Cuál es la materia preferida por los alumnos?
 - 4. Calcula el resultado de las operaciones:

a)
$$\frac{2}{3} \cdot \frac{1}{2} - \frac{1}{3} : \frac{4}{3} + \frac{1}{8} + \frac{3}{6} : \frac{2}{3} =$$
 b) $\frac{1}{3} + \frac{1}{4} : \left(\frac{1}{3} - \frac{1}{2} + \frac{3}{4}\right) - \frac{3}{6} =$

b)
$$\frac{1}{3} + \frac{1}{4} : \left(\frac{1}{3} - \frac{1}{2} + \frac{3}{4}\right) - \frac{3}{6} = \frac{3}{6}$$

Realiza las operaciones siguientes:

a)
$$\left(\frac{2}{3} - \frac{1}{4}\right) : \left(\frac{1}{8} - \frac{1}{6} + \frac{1}{3}\right) - \frac{2}{3}$$

b)
$$\frac{4}{5}: \left[\frac{3}{4}\left(\frac{1}{6} + \frac{2}{3}\right) - \frac{3}{8}\right] - 3\left[\frac{1}{6}: \left(1 - \frac{2}{5}\right)\right]$$

6. Alberto ha disfrutado de 30 días de vacaciones. En el viaje ha ocupado 4 días, 12 días ha disfrutado de la playa, 10 días ha realizado excursiones y el resto ha visitado a sus amigos. ¿Qué proporción del tiempo ha destinado a cada actividad?

- 7. Aproxima con dos cifras decimales el valor de $\sqrt{17}$ por exceso y por defecto.
- 8. Clasifica los siguientes números decimales en números racionales y números irracionales, explicando en cada caso la razón:
 - a) 1,1213141516...; b) 1,213141414....;
 - c) 1,2020020002.....
 - d) 1,1357913579....
- 9. Escribe en forma decimal periódica las siguientes fracciones e identifica los varios tipos de formas periódicas que aparecen: $\frac{7}{3}$, $\frac{3}{7}$, $\frac{7}{10}$, $\frac{3}{100}$, $\frac{8}{300}$, $\frac{4}{111}$
- 10. Indica cuáles de los siguientes números son racionales y cuáles irracionales, y ordénalos de mayor a menor:

11. El equipo de baloncesto del instituto juega la final del campeonato. Luis hizo - de los

puntos, Sonia los $\frac{2}{8}$ y Laura los $\frac{3}{8}$. Los restantes jugadores hicieron 16 puntos. Calcula el número de puntos conseguidos por Luis, Sonia y Laura.

12. Realiza estos cálculos teniendo en cuenta la jerarquía de las operaciones:

$$a)\frac{1}{4} - \frac{2}{5} \cdot \frac{1}{3} + 2$$

b)
$$\frac{1}{4}$$
 $\frac{2}{5}$ $\left(\frac{1}{3} + 2\right)$ c) $\left(\frac{1}{4} - \frac{2}{5}\right)$ $\frac{1}{3} + 2$

$$c)\left(\frac{1}{4} - \frac{2}{5}\right) \frac{1}{3} + 1$$

$$d)\left(\frac{1}{4} - \frac{2}{5}\right) \cdot \left(\frac{1}{3} + 2\right)$$

- 13. Escribe en forma fraccionaria los números.
- a) 3,5 b) 0,66 c) -3,55.... d) 2,15 e) 5,2555.... f) 0,7575... g) 1,11... h) 6,2525...

POTENCIAS Y RAÍCES DE NÚMEROS REALES

1. Simplifica todo lo que puedas la expresión
$$\frac{10^{-2} \cdot 5^4}{15^2 \cdot 6^{-2}}$$

2. Opera y expresa el resultado como una potencia.

$$a)\left(\frac{3}{5}\right)^4 \div \left(\frac{5}{3}\right)^3 \qquad \qquad b)\left(-\frac{1}{3}\right)^3 \cdot 3^3$$

$$b\left(-\frac{1}{3}\right)^3 \cdot 3^5$$

3. Calcula: a)
$$\sqrt{\frac{1}{3}} + \sqrt{\frac{1}{12}}$$
 b) $\sqrt{3} \cdot \sqrt[3]{2}$ c) $(1 + \sqrt{3}) - (1 - \sqrt{3})^2$ d) $\sqrt{2^3} \cdot \sqrt{3^3}$

4. Realiza la siguiente operación combinada con potencias. $2 \cdot 3^2 - 5^2 (4 - 2)$: 5

5. Resuelve:

a)
$$2^2 + 3^2 - 2^4$$
 b) $2 \cdot 3^2 + 48 : 2^3$ c) $5 \cdot (3^2 - 7) \cdot 2^2$ d) $2^4 \cdot 3^2 : 2 - (2^4 + 3^2) = 2^4 \cdot 3^2 = 2^4 \cdot 3^2$

c)
$$5 \cdot (3^2 - 7) \cdot 2$$

d)
$$2^4 \cdot 3^2 : 2 - (2^4 \cdot 3^4) = 2^4 \cdot 3^2 = 2^4 \cdot 3$$

6. Aplicando las propiedades de las potencias, simplifica estas expresiones:

$$a)\frac{5^{2} \cdot (5^{-2})^{3} \cdot 5^{4}}{5^{0} \cdot 5^{-5} \cdot (5^{2})^{2}} b)\frac{2^{-1} \cdot (2^{5})^{-3} \cdot 2}{2^{-7}} c)\frac{3^{\frac{3}{2}} \cdot (3^{2})^{\frac{3}{2}}}{3^{3}} d)\frac{7^{-3} \cdot 7^{-1} \cdot 7^{4}}{(7^{5} \cdot 7)^{2}}$$

7. Calcula el valor de la siguiente expresión, simplificando primero todo lo que puedas:

$$\frac{6^2 \cdot 5^3}{3^3 \cdot 10^2}$$

8. Realiza estas operaciones y expresa el resultado en forma de raíz.

$$a)\left(\frac{2}{7}\right)^{\frac{3}{5}} \div \left(\frac{7}{2}\right)^{\frac{1}{2}}$$

$$b\left(\frac{1}{5}\right)^{\frac{3}{4}} \cdot 5^{\frac{2}{3}}$$

9. Simplifica todo lo que puedas:
$$\frac{7^{-\frac{1}{3}} \cdot 2^{\frac{2}{5}} \cdot 3^{\frac{1}{3}}}{2^{-\frac{3}{5}} \cdot 3^{\frac{1}{2}} \cdot 7}$$

10. Calcula:

a)
$$2\sqrt[5]{5} + 8\sqrt[5]{5} - 3\sqrt[5]{5}$$

b)
$$\sqrt{18} + 2\sqrt{50} - 5\sqrt{8}$$

c)
$$\sqrt[4]{32} + 3\sqrt[4]{162} - 3\sqrt[4]{1250}$$

11. Calcula: a)
$$(3-2\sqrt{2})^2$$
 b) $\sqrt{2\sqrt{2}}$ c) $\frac{\sqrt{2}}{\sqrt[4]{2}}$ d) $\sqrt{2}\sqrt[3]{3}$

12. Introduce dentro de la raíz los números que aparecen fuera de ella.

$$a)5\sqrt{3}$$
 $c)2\cdot\sqrt[4]{5}$

$$b)3 \cdot \sqrt[3]{2}$$
 $d)4 \cdot \sqrt{7}$

13.. Simplifica las expresiones.

$$a)3\sqrt{5} + 3\sqrt{20}$$

$$c)\sqrt{45} + 2\sqrt{20} - \sqrt{80}$$

$$(b)\sqrt{27} - 3\sqrt{12}$$

$$(d)\sqrt{8} + 4\sqrt{18} - \sqrt{50}$$

14. Efectúa estas operaciones.

$$a)(2\sqrt{3})\cdot(3\sqrt{2})$$
 $c)(3\sqrt{6})\cdot\sqrt{6}$

$$c)(3\sqrt{6})\cdot\sqrt{6}$$

$$b)\sqrt{125}:(3\sqrt{5})$$

$$d)(5\sqrt{18}):\sqrt{50}$$

15. Expresa los siguientes radicales con el mismo índice.

$$a)\sqrt{2}y\sqrt[4]{3}$$

$$(b)\sqrt{5}y\sqrt[4]{3^3}$$

$$(c)\sqrt[3]{2^2} y\sqrt{7}$$

$$(d)\sqrt[3]{5}y\sqrt[4]{6}$$

PROPORCIONALIDAD DIRECTA E INVERSA

- 1. Se llena un recipiente con 100 Kg de agua salada que contiene un 3% de sal. Debido al calor, la evaporación hace que la disolución se reduzca en un 20%. ¿Qué tanto por ciento de sal contendrá?
- 2. ¿Cuánto dinero corresponde a cada uno de los dos socios de una empresa que ha obtenido unos beneficios de 37800 euros si el primero aportó 12000 euros durante tres años y el segundo 18000 euros durante cuatro años?
- 3. Reparte la cantidad de 152 euros entre tres deportistas de forma inversamente proporcional a los minutos que han tardado en hacer un recorrido y que ha resultado ser de 5, 15 y 20, respectivamente.
- 4. En una fiesta, tres invitados gastan en refrescos 40 euros. ¿Cuánto pagará cada uno si se llevan 10, 15 y 25 refrescos respectivamente?
- 5. Calcula: a) El 20% de 6560; b) el 0,80% de 2005; c) el 20% del 30% de 10000. d) el 50% del 40% del 30% de 1000000
- 6. El precio de la vivienda subió el año pasado un 4% y este bajó un 2%. ¿Cuál es ahora el precio de un piso que antes de la primera subida valía 144000 euros?
- 7. El precio de los compact discs ha subido en un cierto periodo de 130 a 140,50 euros. ¿Qué porcentaje representa esta subida?
 - 8. Si 25 litros de alcohol pesan 20 kilogramos. ¿cuánto pesarán 114 litros?
- 9. La madre de Elena cobra mensualmente 1749,88 euros después de haberle sido retenido un 18% por Hacienda. ¿Cuánto habría cobrado si no se hubiese efectuado la retención?
- 10. Los tres camareros de un bar trabajan 4, 6 y 8 horas al día, respectivamente. Al final del mes se obtiene un bote que asciende a 725,40 euros. ¿Cuánto le corresponderá a cada uno?
- 11. ¿Cuánto ganarán 10 trabajadores en 60 días si 15 trabajadores en 30 días han ganado 18750 euros?
- 12. El precio de la gasolina subió en enero un 4%. En febrero bajó un 2% y en marzo volvió a subir un 5%. ¿Cuál fue el porcentaje de variación del precio en este trimestre?
 - 13. Reparte 4371 en partes inversamente proporcionales a 3, 4 y 5.
 - 14. Reparte 7875 en partes inversamente proporcionales a 3, 5 v 6.
 - 15. reparte 578 en partes inversamente proporcionarles a 4, 4 y 18.
- 16. María, Nuria y Paloma han cobrado por un trabajo 344 euros. María ha trabajado 7 horas; Nuria, 5 horas y Paloma, 4 horas. ¿Qué cantidad le corresponde a cada una?

17. la cantidad 12500 se incrementa primero en un 12% y el resultado se vuelve a incrementar en otro 4% ¿Cuál es la cantidad final resultante?

POLINOMIOS

1. Dadas las siguientes operaciones algebraicas, halla el valor numérico para

$$a = 4$$
, $b = 3$ y $c = -1$;

a)
$$\frac{a^2 - (b - c)^2}{(a + b + c)}$$
 $\frac{-b + \sqrt{b^2 - 4ac}}{2a}$

- 2. Realiza las siguientes operaciones:
- a) $(2x^3 + 3x 2) (3x^3 + 2x^2 3) + (x^2 2x)$ b) $(3x^2 2x + 2)(2x^2 3) (2x 5)^2$
- c) $(2x-3)^3 + (2x+3)^3$
- 3. Sacar factor común en las expresiones: a) $8x^5 16x^3 4x^2$ b) $2a^2 4ab + 6 ca 12 abc$
- 4. Calcula el valor numérico de las siguientes expresiones algebraicas para los valores que se indican:

a)
$$4x^2 + y^2 - 4xy$$
 para $x = 3$, $y = 4$ b) $(2x - y)^2$ para $x = 3$, $y = 4$ c) $\frac{3}{4}\pi r^3$ para $r = 2$, $r = \frac{1}{2}$

- 5. Dados los polinomios $P(x) = 3x^3 2x + 3$, $Q(x) = 2x^2 + 3x 2$, $R(x) = x^3$, calcula:
- a) P(x) + Q(x) + R(x) b) P(x) Q(x) R(x) c) $P(x) \cdot Q(x)$ d) $P(x) \cdot Q(x) \cdot R(x)$
- 6. Realiza las siguientes operaciones:

a)
$$(2x^2 + 3y^2)^2 - (2x^2 - 3y^2)^2$$
 b) $(2x + 1)^2 + (2x + 2)^2 + (2x + 3)^2$ c) $(2x + 3y)^3 - (2x - 3y)^3$

- 7. Saca factor común en las siguientes operaciones algebraicas:
- a) $4y^3 8y^5$
- b) $12x^2y^3 8x^3y^2$
- c) $3a^2 + 6ab 9ac$
- 8. Calcula el valor de la expresión algebraica $\sqrt{b^2 4ac}$ para los siguientes valores:
- a) a = 1 b = -5, c = 6
- b) a = 1, b = -1, c = -12
- c) a = 2, b = -20, c = 50
- 9. Realiza las siguientes operaciones:

a)
$$-5x(x^2+x+1)+4(2x^3+7x^2-2)$$

$$(b)(3x-2)^2 \cdot (-2x+1) - 3(6x^3 - 4x^2 + 3x - 2)$$

$$c)(-x+2)\cdot(5x+3)\cdot(2x-4)-3x(x+1)$$

$$d)4(-5x^2+6x-1)-(2x^3-6)+7x^2-8x$$

$$e)(-7x+2)\cdot(4x-5)-2x(-3x^2+9)$$

$$(f) - x^2 \cdot (x^3 - x^2 - 1) - x(x^2 - 1)$$

$$g(x+1)^3 - x^3 - 1 - 3(x^2+1)$$

10. Con los polinomios:

$$P(x) = -5x^4 + 7x^2 - 5x + 1$$
; $Q(x) = -6x^3 + 9x^2 - x + 1$;

$$T(x) = x^4 + 2x^3 + 8x - 2$$
 realiza las operaciones indicadas:

a) P(x)-T(x)+2M(x)

b)
$$[(M(x)-P(x))\cdot (T(x)-M(x))]$$
 c) $3P(x)-4T(x)-M(x)$

11. Efectúa estos productos:

a)
$$-3x^2 \cdot [4x^3 - 5x + 2]$$

b)
$$5x^2yz^4 \cdot [4x^35x + 2]$$

c)
$$(6y^2 - 5y + 1) \cdot (4y^2 - 3)$$

12. Realiza las operaciones indicadas con los siguientes polinomios:

$$P(x) = 5x^2 - 4x + 1$$
; $Q(x) = -6x + 2$; $L(x) = x^2 - 5$; $M(x) = x^3 - 5x + 4$

a) P(x)+Q(x) b) Q(x)-M(x) c) L(x)x M(x) d)
$$(M(x))^2$$

DIVISIÓN DE POLINOMIOS. RAÍCES

- 1. Divide los polinomios: $(6x^5 5x^4 + 9x^2 + 3x 21)$: $(3x^2 + 2x^2 3x 4)$
- 2. Calcula el valor de m para que al dividir el polinomio $P(x) = 3x^4 + 11x^3 + mx^2 - 13x + 3$ entre el binomio x +3 se obtenga de resto 12.
- 3. Sin hacer la división, decide si el polinomio $4x^5 + 12x^4 2x^3 6x^2 + 3x + 9$ es divisible o no por el binomio x + 3.
- 4. Halla las raíces enteras y factoriza el polinomio: $x^4 + x^3 10x^2 + 8x$ Efectúa las siguientes divisiones:

a)
$$(6x^4 + 16x^3 + 11x^2 + 6x + 4) : (3x^2 + 5x - 1)$$

a)
$$(6x^4 + 16x^3 + 11x^2 + 6x + 4) : (3x^2 + 5x - 1)$$

b) $(4x^5 - 24x^4 + 37x^3 - 16x^2 + 16x + 4) : (x^3 - 4x^2 + 2x - 3)$

c)
$$\frac{6x^6 - 10x^5 + 23x^4 - 11x^3 + 9x^2 + 7x - 4x^4 - 2x^3 + 2x^2 - 3x + 1}{-2x^3 + 2x^2 - 3x + 1}$$

- 5. Utiliza la regla de Ruffini para realizar las siguientes divisiones:
- a) $(x^4 x^3 10x^2 + 3x + 3)$: (x + 3)
- a) $(6x^5 + 4x^4 21x^3 16x^2 8x 8) : (x 2)$ b) $(-3x^4 + 17x^3 15x^2 + 21x + 2) : (x 5)$
- 6. Utilizando el valor numérico, halla el resto de las siguientes divisiones:

a)
$$(3x^6 + 12x^5 - 2x^4 - 8x^3 + x^2 + 6x - 5)$$
: $(x + 4)$

b)
$$(-5x^5 + 62x^4 - 27x^3 + 36x^2 + 7x - 74)$$
 : $(x - 12)$

c)
$$(2x^5 + 7x^4 - 16x^3 + 7x^2 + 41x - 96)$$
 : $(x + 5)$

- 7. Calcula el valor de <u>m</u> en los siguientes casos:
- a) El polinomio $(3x^5 + 6x^4 + 2x^3 + x^2 3mx 2m)$ es divisible por (x+2)
- b) El polinomio ($2x^5 9x^4 + 9x^3 + 2x^2 mx m$) tiene el número 3 como raíz entera. c) El polinomio ($5x^6 + 10x^5 2x^4 4x^3 + mx^2 x 5m$) es divisible por (x + 2).
- 8. Calcula las raíces enteras de los siguientes polinomios:

a)
$$2x^3 - 4x^2 - 22x + 24$$

b)
$$3x^3 + 54x^2 + 321x + 630$$

c)
$$-2x^4 + 20x^2 - 18$$

9. Factoriza los siguientes polinomios:

a)
$$2x^3 - 4x^2 - 22x + 24$$

b) $3x^3 + 9x^2 - 219x - 945$ c) $-2x^4 + 20x^2 - 18$

c)
$$-2x^4 + 20x^2 - 18$$

10. Factoriza al máximo los siguientes polinomios:

$$a)P(x) = x^4 - 5x^2 + 4;$$

$$b)Q(x) = x^3 + 4x^2 - 7x - 10$$

11. Efectúa cada división indicando el polinomio cociente v el resto:

a)
$$(x^5 - 3x^4 + x^3 + x^2 + x): (x^2 + x + 1)$$

b)
$$(2x^4 + 2x^2 + 3): (x^2 - x - 1)$$

c)
$$(x^6 - x^3 + x - 1): (x^3 - x + 2)$$

12. Aplicando el teorema del resto, halla en cada caso el valor que debe tomar la K:

a)
$$P(x) = x^4 + 4x^3 + kx^2 + 10x + 3$$
 es divisible por x+3

b)
$$Q(x) = x^3 + 2x^2 + kx + 3$$
 que tiene por factor a x-1

c)
$$R(x) = 2x^2 + kx - 15$$
 es divisible por x+5

EXPRESIONES FRACCIONARIAS Y RADICALES

1. Simplifica:

a)
$$\frac{2x^2 - x - 3}{4x^2 - 9}$$
 b) $\frac{x^2y - x^3}{ax^2y - a^2x^2}$

2. Calcula y simplifica:

a)
$$\frac{2}{1+x} + \frac{3}{1-x} - \frac{5-x}{1-x^2}$$

3. Realiza las operaciones:

a)
$$\frac{3x}{x-5} + \frac{2x-1}{x+2}$$
 b) $\frac{2x-1}{3x} \cdot \frac{x+2}{x^2-3x+1}$
c) $\frac{2x-1}{x^2-4} - \frac{3x-1}{x-2}$ d) $\frac{x^2-x+1}{x^3} : \frac{4x-7}{x+1}$

5. Simplifica las siguientes fracciones:

a)
$$\frac{10a^2b^5c^6}{12a^2b^3c^5}$$
 b) $\frac{xy - xz}{x^2y - x^2z}$

6. Factoriza sacando previamente factor común:

a)
$$\frac{ax+a+2x+2}{2ax+a+4x+2}$$
 b) $\frac{x^2+x-2}{2x^2-2}$

7. Opera y simplifica las siguientes sumas y restas:

a)
$$\sqrt{a^2b} + \sqrt{4b} - \sqrt{9b}$$
 b) $\sqrt[3]{x} + \sqrt[3]{x^4} + \sqrt[3]{x^7}$

8. Opera y simplifica los siguientes productos y cocientes:

a)
$$\frac{(x-y)^2}{x^2} \cdot \frac{2x^2}{x^2 - y^2}$$
 b) $\sqrt{xy} \left(\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} \right)$

9. Halla el valor numérico de las siguientes expresiones:

a)
$$\sqrt{x\sqrt{x}}$$
 para x = 2 b) $\sqrt[3]{2ab}^6 + \sqrt[3]{2a^7}$ para a = 2 y b = -1

10. Opera y simplifica:

$$a)\left(\frac{x+2}{x-2} - \frac{x-2}{x+2}\right) \cdot \left(x - \frac{4}{x}\right) \quad b)\left(\frac{1}{x} - \frac{x}{x-1}\right) : \left(\frac{1}{x} + \frac{x}{x-1}\right)$$

11. Simplifica las siguientes expresiones radicales

a)
$$\sqrt[15]{x^5 y^{20} z^{10}}$$
 b) $\sqrt[3]{x^{14} y^7 z^{23}}$ c) $\sqrt[12]{a^4 b^8 c^6}$ d) $\sqrt[8]{x^2 y^4 z^8}$

12. Opera las siguientes expresiones radicales:

a)
$$\sqrt{12x} + \sqrt{75x} - \sqrt{27x} + \sqrt{48x}$$

b)
$$\sqrt[3]{a} - \sqrt[3]{ab^3} + \sqrt[3]{ab^6} - \sqrt[3]{ab^9}$$

c)
$$\sqrt[5]{xy^2} + \sqrt{16x^3y^4} - \sqrt{9xy^6}$$

13. Opera v simplifica

a)
$$\left(\frac{1}{x} - \frac{1}{2x} - \frac{1}{3x}\right)$$
: $\left(\frac{1}{x^2} - \frac{1}{x} + \frac{1}{2x}\right)$

b)
$$\left[\left(x+\frac{1}{x}\right):\left(x-\frac{1}{x}\right)\right]\cdot\left(x-1\right)$$

c)
$$\left(\frac{x+1}{(x-1)^2} \cdot \frac{x^2-1}{x}\right) : \left(\frac{x+1}{(x-1)^2}\right)$$

ECUACIONES. SISTEMAS DE ECUACIONES

1. Resuelve la ecuación quitando previamente los paréntesis:

$$3(x-2)-2(2x-4)-3(x+3)=\frac{x}{2}-25$$

2. Resuelve la ecuación quitando previamente los denominadores:

$$\frac{2x+2}{3} - \frac{3x-1}{5} = 6 + \frac{4x+2}{2}$$

- 3. Calcula dos números impares consecutivos tales que sus cuadrados de diferencien en 64.
- 4. Resuelve las siguientes ecuaciones guitando previamente los paréntesis:
- a) 7(x+3) + 2x = 3(x+1)
- b) 4(x-3) 5(2x-6)-3(3x+1) = 2x 2

c) 4 (2x-1) – 3(
$$\frac{x}{2}$$
 + 1) = $\frac{x}{3}$ + 30

d)
$$2\left(\frac{x}{2}-1\right)-3\left(\frac{x}{4}+2\right)=2x-1$$

5. Resuelve las siguientes ecuaciones guitando previamente los denominadores:

a)
$$\frac{x+2}{3} + \frac{2x-1}{4} = 2x - \frac{3}{4}$$

b)
$$\frac{5x+2}{3} - \frac{2x-4}{4} + 2x = \frac{x}{2} - 1$$

c)
$$\frac{3x+3}{4} - \frac{2x-2}{3} = \frac{35}{3} - \frac{5x+5}{2}$$

d)
$$\frac{3-4x}{2} - \frac{2x-1}{4} + \frac{1-x}{3} = -\frac{25}{4} - 7x$$

6. Descompón el número 25 en dos sumandos tales que la tercera parte del primero más la quinta parte del segundo sea igual a 7.

- 7. Javier tiene 4 años más que su hermana Elena. Hace seis años Javier tenía el doble de edad que entonces tenía Elena. Calcula la edad actual de cada uno.
- 8. Lola ha recorrido una cuarta parte de un camino y le faltan 3 kilómetros para llegar a la mitad. ¿Qué longitud tiene el camino?
 - 9. Resuelve las siguientes ecuaciones de segundo grado por el método general:

a)
$$x^2 - 2x - 15 = 0$$

b)
$$x^2 + 13x + 42 = 0$$

c)
$$3x^2 - 3x - 6 = 0$$

d)
$$-2x^2 - 30x - 100 = 0$$

10. Resuelve las siguientes ecuaciones incompletas:

a)
$$3x^2 = 6x$$

b)
$$4x^2 - 5 = 4$$

c)
$$3 - 4x^2 = 8x^2 - 9$$

d)
$$-10x^2 = 5x$$

11. Resuelve las ecuaciones:

a)
$$\frac{2}{x-1} - \frac{3}{x+2} = -\frac{1}{70}$$

b)
$$\frac{2}{x+2} + \frac{3}{(x+2)^2} = \frac{11}{16}$$

c) x-
$$\frac{2}{x} = 1$$

12. Resuelve los sistemas:

a)
$$\begin{cases} 2x + 3y = 5 \\ 3x - 4y = -18 \end{cases}$$

$$\begin{cases} 2(x+1) - 3(y-2) = 19 \end{cases}$$

$$\int 5x + 3y = 17$$

c)
$$\begin{cases} x + 2y = 0 \\ 3x + 7y = 1 \end{cases}$$

$$\begin{cases} 7x + 2y = 4 \\ 5x + y = 1 \end{cases}$$

$$\begin{cases} 5x + y = 1 \end{cases}$$

$$\begin{cases} x - 3y = -8 \\ x + 2y = 17 \end{cases}$$

13. Resuelve los sistemas:

a)
$$\begin{cases} \frac{x}{2} + \frac{y}{3} = 8\\ \frac{x}{3} - \frac{y}{2} = 1 \end{cases}$$

b)
$$\begin{cases} \frac{x+2y}{5} = 3\\ 2x+5y-8 = 4 \cdot (y+1) \end{cases}$$

c)
$$\begin{cases} \frac{x}{3} + \frac{y}{2} = 5\\ \frac{x}{2} - \frac{y}{4} = 1 \end{cases}$$

$$d) \quad \begin{cases} \frac{x}{3} = \frac{y}{4} \\ 2x + 3y = 9 \end{cases}$$

e)
$$\begin{cases} \frac{x-1}{2} + y = -2\\ x - \frac{y}{3} = 4 \end{cases}$$

- 14. Considera la ecuación 3x-2y=4 y los valores de x: -2, -1, 0, 1 y 3. Calcula los correspondientes valores de y para que completen soluciones a la ecuación dada.
 - 15. Halla dos números tales que su suma sea 31 y su diferencia 3.

- 16. La edad de Javier era exactamente hace 3 años el triple que la de Elena, pero dentro de cuatro años será solamente el doble. Halla las edades actuales de Javier y Elena.
- 17.Dos hogazas de pan y ocho barras pesan 6 kg y 12 barras y una hogaza pesan 4kg. ¿Cuánto pesa cada barra de pan y cada hogaza?
- 18. El triple de un número menos el doble de otro número es igual a 45 y el doble del primero menos la cuarta parte del segundo es igual a 43. ¿De qué números se trata?
- 19.Para una fiesta se compran refrescos a $0.85 \in y$ bolsas de frutos secos a $1.25 \in .$ Por cada refresco se compran tres bolsas de frutos secos y en total se pagan 230 €. ¿Cuántos refrescos y bolsas se han comprado?
- 20.Por una camisa y un pantalón se han pagado 120 €, y por dos camisas y tres pantalones se han pagado 312 €. ¿Cuánto cuestan cada camisa y cada pantalón?
- 21.Halla la edad de un padre y la de su hijo sabiendo que la edad del padre es el triple de la del hijo y la diferencia de las edades es de 28 años.
- 22.Halla los lados de un rectángulo sabiendo que el perímetro mide 130 m y que la base es 3/2 de la altura.
- 23. Halla dos números sabiendo que al dividir el mayor entre el menor se obtiene de cociente 2 y de resto 3, y que la suma de los dos números es 39.

FUNCIONES

 Un estudio médico muestra la altura media que debe tener un bebé en sus dos primeros años de edad. El citado estudio se resume en la siguiente tabla.

Edad (meses)	0	6	12	18	24
Altura (cm)	50	67	75	81	87

Representa la gráfica de la altura en función de la edad. Interpreta el crecimiento de la función.

- 2. ¿Cuál es la gráfica de una función que indica el coste de la factura mensual de la electricidad sabiendo que cada KWh cuesta 9 céntimos de euro y la tarifa fija por contratación asciende a 15 euros? Calcula a cuánto ascenderá la factura de una familia que ha consumido 500 KWh.
- 3. Dada la función f(x) que asocia a cada número real la mitad de su raíz cuadrada negativa, escribe la expresión de f(x) y calcula f(1), f(4) y f(16). ¿Cuál es su dominio y su recorrido?

Dada la tabla:

Х	0	1	2	3	4
У	-1	1	3	5	7

Representa estos puntos en un sistema de coordenadas y escribe la ecuación de la función que relaciona las variables x e y.

- 4. Observa la gráfica y estudia las siguientes propiedades:
 - a) Dominio y recorrido
 - b) Calcula f(-3); f(4); f(8)
 - c) Intervalos de continuidad y discontinuidad
 - d) Tasa de variación en los intervalos $\left[-4,\!-2\right]\!,\left[0,\!3\right]\!,\left[6,\!8\right]$

FUNCIONES LINEALES Y CUADRÁTICAS.

- 1. Calcula la expresión de la función lineal que pasa por los puntos A (-1, 4) y B (5, -2). Halla su pendiente y su ordenada en el origen.
- 2. Calcula el vértice de la parábola $y = -2x^2 + 4x$. Calcula, asimismo, su eje de simetría y un par de puntos homólogos respecto a dicho eje.
- 3. Halla la pendiente de la recta y = $\frac{1}{2}x + \frac{3}{4}$, así como sus puntos de corte con

los ejes ordenados. Calcula la ecuación de la recta trasladada una unidad a la derecha.

4. Comprueba si las expresiones algebraicas que reflejan las tablas siguientes son o no funciones lineales y, en caso positivo, indica el valor de su pendiente y de su ordenada en el origen.

а	1)					
	X	0	1	2	3	4
	F(x)	1	3	5	7	9
þ,						
D,	X	1	2	4	6	8
	F(x)	1	-1	-5	-9	-13
c))					
	Х	1	3	5	7	9
	F(x)	1	9	25	49	81

5. Halla las ecuaciones de las rectas que pasan por los puntos que se indican. Indica, asimismo, el valor de la pendiente y de la ordenada en el origen en cada caso.

- 6. Halla las ecuaciones de las rectas que verifican:
 - a) pendiente 2 y pasa por el punto A(-1, 3)
 - b) pendiente -2 y pasa por el punto A(-1, -3)

Dibújalas.

7. Calcula el vértice y el eje de simetría de las siguientes parábolas. Dibújalas, obteniendo previamente algún par de puntos homólogos respecto a dicho eje.

a)
$$y = x^2 - 6x + 8$$

b)
$$y = -x^2 + 5x - 6$$

8. Representa por traslación estas funciones:

$$a)y = x^2 + 3$$

$$b)y = x^2 - 2$$

$$c)y = [x+1]^2$$

$$d)y = [x-4]^2$$

$$e$$
) $y = [x+1]^2 - 3$

9. Un técnico de televisores cobra 5 € por ir a domicilio y 10 € por cada hora o fracción de hora.

Tiempo (h)	1	2	3	4	5	
Dinero (€)			35			

- a) Completa la tabla.
- b) Representa la función en unos ejes coordenados.
- c) ¿Es una función continua?
- 10. Una empresa A de alquiler de coches cobra 4 € por cada hora. Otra casa B cobra una cantidad fija de 9 € más 3 € por cada hora. Expresa en cada caso el coste en función del número de horas. Haz la representación gráfica de ambas funciones y razona cuándo interesa alquilar un coche en la casa A y cuándo en la casa B.
- 11. Representa gráficamente las siguientes funciones. Halla en cada una de ellas la pendiente y la ordenada en el origen. ¿Cuál es creciente y cuál es decreciente?

a)
$$y = -x/3 + 2$$

b)
$$2x - y = 3$$

c)
$$y = 3x$$

$$d) y = -2x + 1$$

$$e) 2x + 3y = 6$$

- 12. Representa la recta que pasa por los puntos A(-2,3) y B(4,5). Halla su ecuación.
- 13. Representa la recta que pasa por el punto P(-2,1) y cuya pendiente es m = 3. Halla su ecuación.
- 14. Representa gráficamente las siguientes funciones cuadráticas. Halla sus puntos de corte con los ejes y su vértice:

a)
$$y = x^2 - 2x - 3$$

$$b) \ y = -x^2 + 6x - 8$$

$$c) \ y = -x^2 + 4x - 4$$

$$d) y = x^2/2$$

15. Halla los puntos de corte de las siguientes parejas de funciones:

a)
$$y = x + 1 e y = -x^2 + 5x - 2$$

b)
$$y = x^2 + 4x + 4 e y = -x^2 - 6x - 4$$