EJERCICIO 1 Una biblioteca dispone de tres modalidades para el préstamos de libros:

MODALIDAD 1: abono anual de 5 euros con un préstamo ilimitado de libros

MODALIDAD 2: 0,25 € por cada libro prestado

MODALIDAD 3: Carné de socio que cuesta 3 € y 0,10 € por cada libro prestado

- a. Halla las fórmulas de las funciones que dan la cantidad anual abonada a la biblioteca en función del número de libros prestados. (1 punto)
- b. Halla gráficamente qué modalidad es la más ventajosa dependiendo de los casos.
 (1 punto)

EJERCICIO 2: Representa gráficamente las siguientes funciones a partir de los cortes con los ejes y de sus tendencias :

a)
$$y = 2x^3 - 3x^2 - 5x + 6$$
 (1 punto) b) $y = \frac{3x-2}{2x+1}$ (1 punto)

EJERCICIO 3: Halla el dominio de la función $f(x) = \sqrt{\frac{x-3}{x+1}}$ (1 punto)

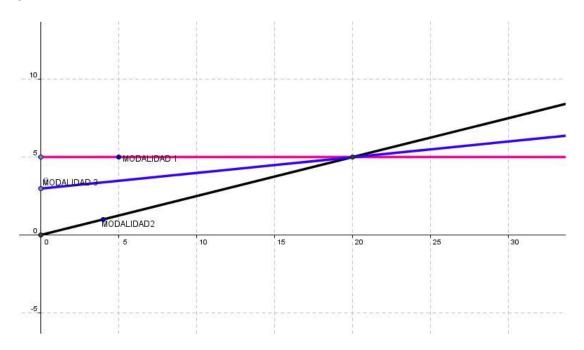
EJERCICIO 4: Dadas las funciones $f(x) = \frac{2x-1}{3x}$ y $g(x) = \frac{3}{x}$, calcula la expresión simplificada de : a) (f-g)(x) b) $(f \circ g)(x)$ c) $(g \circ f)(x)$ d) $f^{-1}(x)$ (1,75 puntos)

EJERCICIO 5 Halla la ecuación de una parábola sabiendo que pasa por el punto P(0, 3) y que su vértice es V(3, -2) (1,25 puntos)

EJERCICIO 6 En una cierta ciudad la temperatura a las 0 h es de 2° C. Desciende uniformemente y a las 5 de la mañana es de -4° C. Así se mantiene hasta las 8 de la mañana, hora en la que comienza a subir alcanzando los 0° C a las 10 de la mañana.

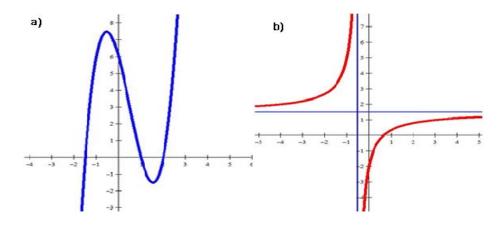
- a. Representa la función que describe la temperatura entre las 0h y las 10 h
- **b.** Da su expresión analítica (0.5+1.5 puntos)

SOLUCIONES


EJERCICIO 1

MODALIDAD 1 : Función constante y = 5

MODALIDAD 2 : Función lineal y = 0.25x


MODALIDAD 3: Función afín y = 0.10x + 3

Es conveniente dar a x las escala adecuada. Para ello podemos calcular el punto de corte de dos de las rectas resolviendo el sistema. Así, las rectas que dan las modalidades 1 y 2 se cortan si 0.25x = 5 de donde x = 20. Hacemos una escala de 5 en 5.

CONCLUSIONES Hasta un número de 20 libros, lo más ventajoso por orden es modalidad 2, modalidad 3 y modalidad 1. Para 2º libros da igual la modalidad por la que se opte. A partir de 20 libros, la modalidad más ventajosa es la 1, seguida de la 3 y de la 2.

EJERCICIO 2

2a) $y = 2x^3 - 3x^2 - 5x$	+6
----------------------------	----

Dominio: R

Cortes eje Y : si x = 0 y = 6

Cortes eje X : si y = 0, x= 1, 2, -3/2

	2	-3	-5	6
1		2	-1	-6
	2	-1	-6	0

$$2x^2 - x - 6 = 0$$

$$x = \frac{1 \pm \sqrt{1+48}}{4} = \frac{1 \pm 7}{4} = 2, -3/2$$

Cuando $x \rightarrow \infty$ $f(x) \rightarrow \infty$

Cuando $x \rightarrow -\infty$ $f(x) \rightarrow -\infty$

b)
$$y = \frac{3x-2}{2x+1}$$

 $\textbf{Dominio}: \textbf{R} - \{-1/2\}$

Cortes eje Y : si x = 0 y = -2

Cortes eje X : si y = 0 x = 2/3Asíntota vértical : x = -1/2

Asíntota horizontal: y = 3/2

EJERCICIO 3 $f(x) = \sqrt{\frac{x-3}{x+1}}$ Para que f(x) esté definida ha de ser $\frac{x-3}{x+1} \ge 0$

$$D = (-\infty, -1) \cup [3, \infty)$$

EJERCICIO 4

$$(f-g)(x) = \frac{2x-1}{3x} - \frac{3}{x} = \frac{2x-1}{3x} - \frac{9}{3x} = \frac{2x-10}{3x}$$

$$(fog)(x) \quad x \to \frac{3}{x} \to \frac{2 \cdot \frac{3}{x} - 1}{3 \cdot \frac{3}{x}} \to \frac{\frac{6}{x} - 1}{\frac{9}{x}} = \frac{6 - x}{9}$$

(gof)(x)
$$x \rightarrow \frac{2x-1}{3x} \rightarrow \frac{3}{\frac{2x-1}{3x}} \rightarrow \frac{9x}{2x-1}$$

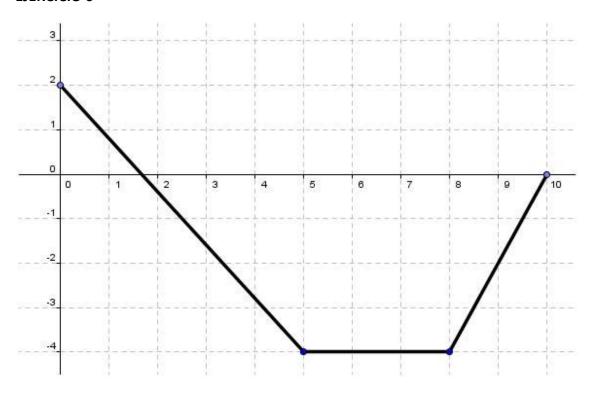
$$Y = \frac{2x-1}{3x} \Rightarrow 3xy = 2x-1 \Rightarrow 1 = 2x-3xy = x (2-3y) \Rightarrow \frac{1}{2-3y} = x \Rightarrow f^{-1}(x) = \frac{1}{2-3x}$$

EJERCICIO 5 $y = ax^2 + bx + c$

Pasa por (0,3) luego si x=0, y=3. Sustituyendo 3=c

$$Y = ax^2 + bx + 3$$

El vértice V(3,-2) es un punto de la curva luego si x=3. y=-2. Sustituyendo:


-2 = 9a + 3b + 3 (ecuación1). Por otro lado y por ser V el vértice -b/2a = 3 (ecuación 2)

Resolvemos el sistema formado por las ecuaciones 1 y 2 :

$$b = -6a$$

$$-2 = 9a - 18a + 3 \rightarrow 9a = 5 \rightarrow a = 5/9 \quad b = -30/9 = -10/3$$

EJERCICIO 6

Tramo 1 : recta que pasa por (0, 2) y de pendiente m = -6/5

Tramo 2 : constante y = -4

Tramo 3 : racta que pasa por (10,0) y tiene pendiente 4/2 = 2

$$F(x) = \begin{cases} -\frac{6x}{5} + 2 & si & 0 \le x < 5 \\ -4 & si & 5 \le x < 8 \\ y = 2(x - 10) & si & 8 \le x \le 10 \end{cases}$$