Problema 1 (1 punto) Escribe como intervalos cada uno de los siguientes conjuntos:

1.
$$A = \{x \in R : 3x + 8 \le \pi\}$$

2.
$$B = \{x \in R : 3x > x + 2, 5 ; 3x - 7 \le 9 - 2x\}$$

Problema 2 (1 punto) Escribe como unión de intervalos cada uno de los siguientes conjuntos:

1.
$$A = \{x \in R : |x - 3| \le 5\}$$

2.
$$B = \{x \in R : |\pi - 3x| > 5\}$$

Problema 3 (2 puntos) Encuentra las soluciones positivas de:

$$1. \ \frac{x^{\frac{3}{2}}}{2x^{\frac{1}{4}}} = \frac{x^{\frac{3}{2}}}{3x^{\frac{3}{4}}}$$

2.
$$2x^{\frac{1}{2}} = 3x^{\frac{3}{2}}$$

Problema 4 (2 puntos) Sabiendo que $\log_{10} 3 = 0,477$ y $\log_{10} 5 = 0,699$, calcular:

1.
$$\log_{10} \sqrt[3]{450}$$

2.
$$\log_{10} \sqrt{60}$$

Problema 5 (3 puntos) Dados los números complejos $z_1 = 1 + i$ y $z_2 = 3 - 4i$, se pide:

- 1. Representarlos en el plano $(0,5 \ puntos)$
- 2. Indicar su parte real e imaginaria (0,5 puntos)
- 3. Calcular el módulo de ambas (0,5 puntos)
- 4. Calcular $z_1 \cdot z_2$ (0,5 puntos)
- 5. Calcular $\frac{z_1}{z_2}$ (1 punto)

Problema 6 (1 punto) Enunciar el "Teorema fundamental del Álgebra"