Examen de Matemáticas Ciencias Sociales I – 1º de Bachillerato

1. Resuelve las siguientes inecuaciones: (2 puntos, 1 por apartado)

a)
$$\frac{x}{6} - \frac{-x+3}{3} < \frac{2x-4}{8} + 1$$

b)
$$\frac{2(x-1)}{3} - \frac{3(x-2)}{4} \le \frac{4(x-3)}{5} - \frac{3}{10}$$

2. Halla los puntos de corte con los ejes de las siguientes rectas y represéntalas gráficamente en el papel cuadriculado: (2 puntos; 2 por apartado)

a)
$$y = -3x - 6$$

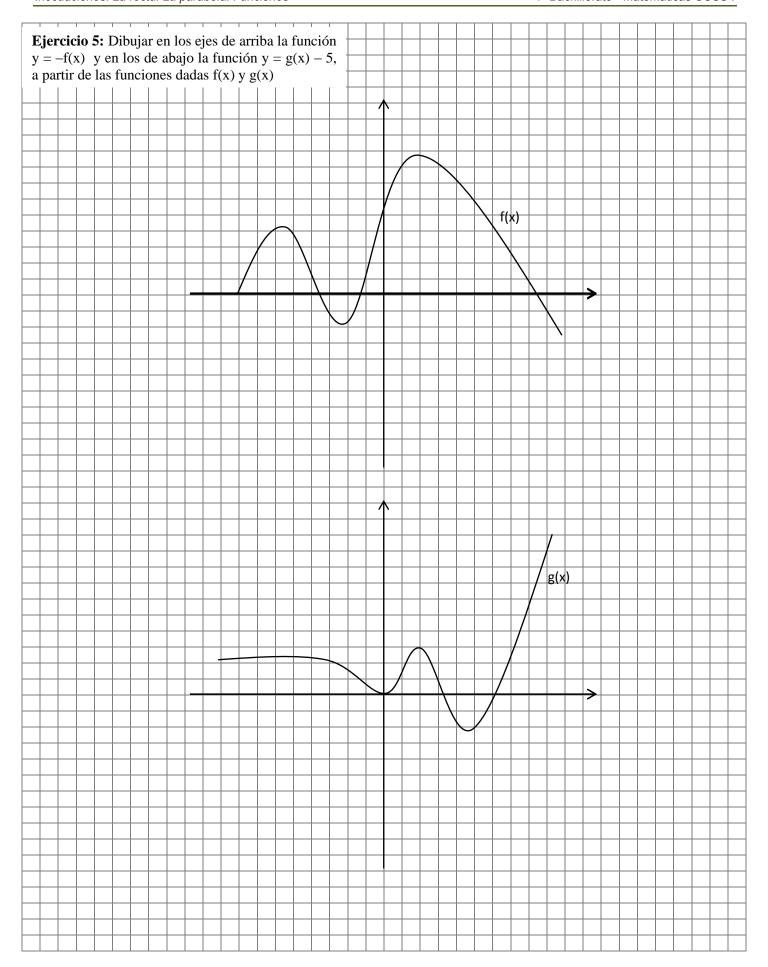
b)
$$2x - 3y - 6 = 6$$

3. Halla la ecuación de la recta que pasa por los puntos P(2, -1) y Q(-1, 8). (1 punto)

4. Es paralela a la recta 2x - y + 2 = 5 y pasa por el punto (1, 3). (1 punto)

<u>lasmatemáticas.eu</u> – Pedro Castro Ortega materiales de matemáticas

Inecuaciones. La recta. La parábola. Funciones


1º Bachillerato - Matemáticas CCSS I

- 5. En el papel cuadriculado de la parte de atrás de esta página están representadas las gráficas f(x) y g(x). Teniendo en cuenta que cada cuadradito es una unidad, representa en los mismos ejes de coordenadas las funciones y = -f(x); y = g(x) 5. (1,6 puntos; 0,8 puntos por gráfica)
- 6. Dada la siguiente parábola $y = \frac{1}{2}x^2 + x 4$:
 - a) Hallar el vértice. (0,5 puntos)
 - b) Hallar los puntos de corte con los ejes. (0,5 puntos)
 - c) Hacer una tabla de valores con, al menos, 5 puntos. (0,5 puntos)
 - d) Representar gráficamente la parábola en el papel cuadriculado. (1 punto)

<u>lasmatemáticas.eu</u> – Pedro Castro Ortega materiales de matemáticas

Inecuaciones. La recta. La parábola. Funciones

1º Bachillerato - Matemáticas CCSS I

I.E.S. "Fernando de Mena"

Departamento de Matemáticas

Examen de Matemáticas CCSS I

24 de enero de 2008 Curso: 1º de Bachillerato C

Assiliator.	Calificación:
Apellidos:	
Nombre:	

1. Resuelve las siguientes inecuaciones: (2 puntos, 1 por apartado)

a)
$$\frac{x}{6} - \frac{-x+3}{3} < \frac{2x-4}{8} + 1$$
 Multiplicando todos los términos por 24:
 $4x - 8(-x+3) < 3(2x-4) + 24 \Rightarrow$
 $4x + 8x - 24 < 6x - 12 + 24 \Rightarrow$
 $4x + 8x - 6x < -12 + 24 + 24 \Rightarrow$
 $6x < 36 \Rightarrow x < \frac{36}{6} \Rightarrow x < 6$
Solución: $(-\infty, 6)$

b)
$$\frac{2(x-1)}{3} - \frac{3(x-2)}{4} \le \frac{4(x-3)}{5} - \frac{3}{10}$$

Multiplicando todos las términos por 60:
 $40(x-1) - 45(x-2) \le 48(x-3) - 18 \implies$
 $40x - 40 - 45x + 90 \le 48x - 144 - 18 \implies$
 $40x - 45x - 48x \le -144 - 18 + 40 - 90 \implies$
 $-53x \le -212 \implies x \geqslant \frac{-212}{-53} \implies x \geqslant 4$
Solución: $x \in [4, +\infty)$

I.E.S. "Fernando de Mena"

Departamento de Matemáticas

 Halla los puntos de corte con los ejes de las siguientes rectas y represéntalas gráficamente en el papel cuadriculado: (2 puntos; 2 por apartado)

a)
$$y = -3x - 6$$

* Corte eje Y : $x = 0 \Rightarrow y = -6$: $(0, -6)$
* Corte eje X : $y = 0 \Rightarrow 0 = -3x - 6 \Rightarrow 3x = -6$
 $\Rightarrow x = -2$: $(-2, 0)$
b) $2x - 3y - 6 = 6$
* Corte eje Y : $x = 0 \Rightarrow -3y - 6 = 6 \Rightarrow -3y = 12$
 $\Rightarrow y = -4$: $(0, -4)$
* Corte eje X : $y = 0 \Rightarrow 2x - 6 = 6 \Rightarrow 2x = 12$

3. Halla la ecuación de la recta que pasa por los puntos P(2, -1) y Q(-1, 8). (1 punto) $\mathbf{y} = \mathbf{m} \times \mathbf{n}$.

→ x=6 : (6,0)

Como pasa pur
$$P(2,-1) \Rightarrow -1 = m \cdot 2 + n$$

Como pasa pur $Q(-1,8) \Rightarrow 8 = m(-1) + n$

$$\Rightarrow 2m + n = -1$$

$$-m + n = 8$$

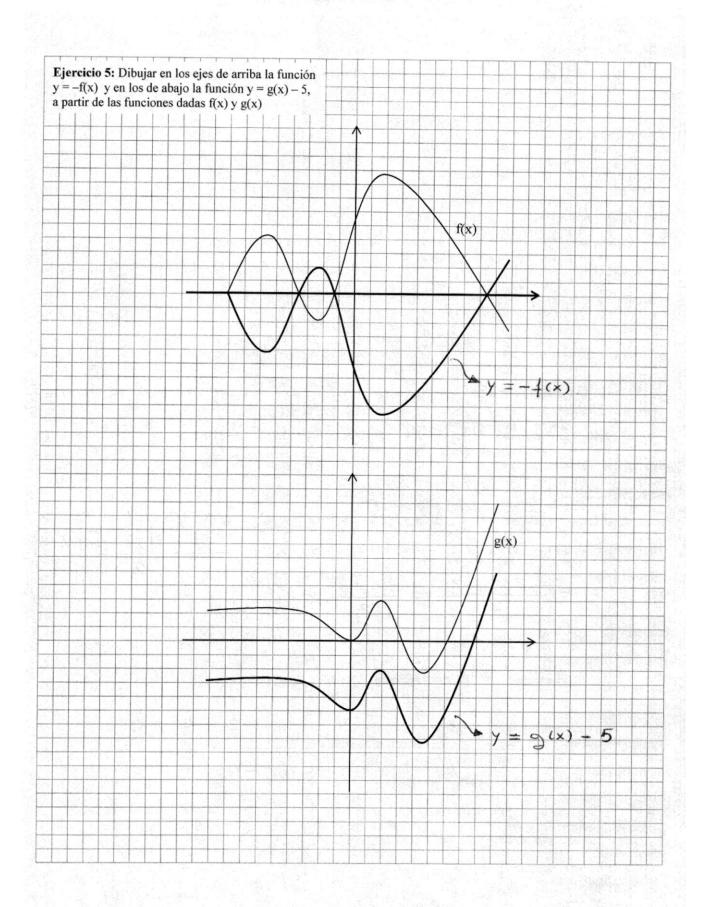
$$\Rightarrow (-1) \Rightarrow (*) m - n = -8$$

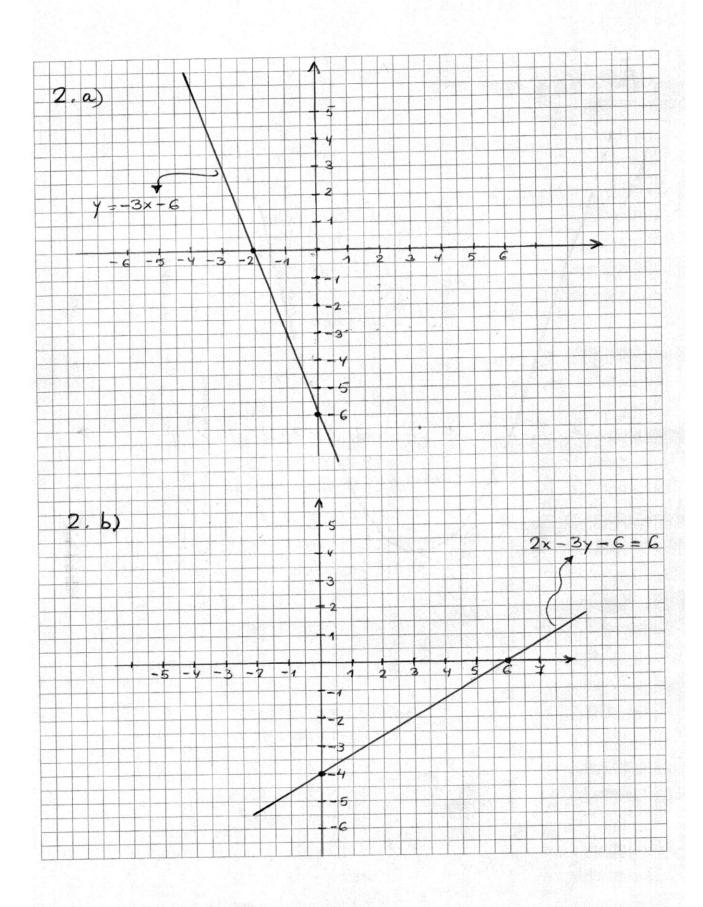
Sustituziendo en (*)
$$m - n = -8 \Rightarrow -3 - n = -8 \Rightarrow n = 5$$

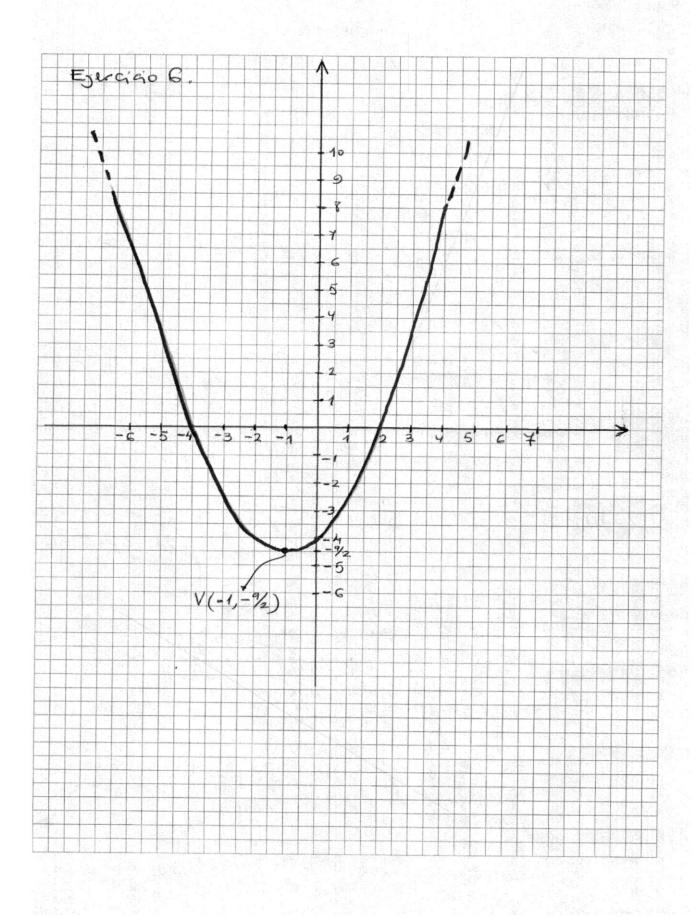
Así pues la recta buscada es $y = -3x + 5$

4. Es paralela a la recta 2x - y + 2 = 5 y pasa por el punto (1, 3). (1 punto)

$$2x-y+2=5 \Rightarrow -y=-2x+3 \Rightarrow y=2x-3$$
Por tanto la recta que busco tiene pendiente $m=2$ por ser paralela a la anterior y sera de la forma $y=2x+n$
Como pasa por $(1,3) \Rightarrow 3=2\cdot 1+n \Rightarrow 3=2+n \Rightarrow n=1$
Así pues la recta buscada es $y=2x+1$


I.E.S. "Fernando de Mena"


Departamento de Matemáticas


- 5. En el papel cuadriculado de la parte de atrás de esta página están representadas las gráficas f(x) y g(x). Teniendo en cuenta que cada cuadradito es una unidad, representa en los mismos ejes de coordenadas las funciones y = -f(x); y = g(x) 5. (1,6 puntos; 0,8 puntos por gráfica)
- 6. Dada la siguiente parábola $y = \frac{1}{2}x^2 + x 4$:
 - a) Hallar el vértice. (0,5 puntos)
 - b) Hallar los puntos de corte con los ejes. (0,5 puntos)
 - c) Hacer una tabla de valores con, al menos, 5 puntos. (0,5 puntos)
 - d) Representar gráficamente la parábola en el papel cuadriculado. (1 punto)

a)
$$V = \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

 $X = \frac{-b}{2a} = \frac{-1}{2 \cdot 1/2} = \frac{-1}{1} = -1$
 $Y = f\left(-\frac{b}{2a}\right) = f(-1) = \frac{1}{2}(-1)^2 + (-1) - 4 = \frac{1}{2} - 1 - 4 = \frac{-9}{2}$
Entoncer el vértice es $\left(-1, \frac{-9}{2}\right)$

b) Eje
$$y: (0, -4)$$

Eje $X: (x_{1,0}), (x_{2,0}) : \frac{1}{2}x^{2} + x - 4 = 0 \Rightarrow$
 $\Rightarrow x^{2} + 2x - 8 = 0 \Rightarrow x = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 1 \cdot (-8)}}{2} =$
 $= \frac{-2 \pm \sqrt{36}}{2} = \frac{-2 \pm 6}{2} = \frac{2}{2} =$

