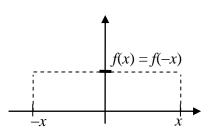
FUNCIONES PARES E IMPARES

1. Función par

<u>Definición</u>: Una función f se dice <u>par</u> si $\forall x \in D(f)$ se verifica: f(x) = f(-x) (o sea, si para cualquier x del dominio de la función, es decir, para todos los valores de x para los que existe imagen, la imagen de x y la de su opuesto -x coinciden).

Si nos fijamos en el gráfico, esto significa que la gráfica de la función pasa por los puntos (x, f(x)) y (-x, f(-x)), que son simétricos respecto del eje OY. Y como esto

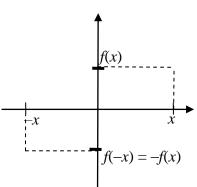


sucede para todos los x del dominio de f, <u>la gráfica de una función par resulta ser simétrica respecto OY</u>.

2. Función impar

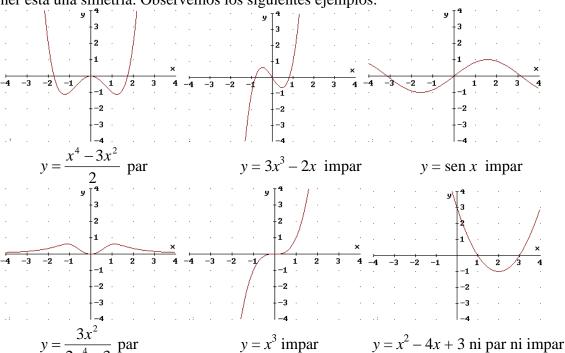
<u>Definición</u>: Una función f se dice <u>impar</u> si $\forall x \in D(f)$ se verifica: -f(x) = f(-x).

Analizando el gráfico descubrimos que la gráfica de la función pasa por los puntos (x, f(x)) y (-x, f(-x)), que son simétricos respecto del punto O. Y como esto sucede para todos los x del dominio de f, la gráfica de una función par resulta ser simétrica respecto del origen de coordenadas.



3. Ejemplos

La mayoría de las funciones ni son pares ni impares. Sin embargo, descubrir si una función, dada por su fórmula, es par, impar o ninguna de las dos cosas suele ser bastante fácil y, caso de ser par o impar, nos aporta bastante información sobre la gráfica, al tener ésta una simetría. Observemos los siguientes ejemplos:



Démonos cuenta de las simetrías de las funciones pares e impares, respecto de OY y de O, respectivamente. Nótese que la última función, al ser parábola, tiene una simetría respecto de su eje x = 2, pero no es par ni impar.

Otros ejemplos de funciones conocidas: Son pares las funciones $y = \cos x$, $y = x^2$. Son impares y = 1/x, y = tg x, y = arcsen x, y = arctg x. No son ninguna de las dos cosas $y = e^x$, $y = \ln x$.

4. Problemas

1) Estudiar si es *par*, *impar* o ninguna de las dos cosas: $y = \frac{x^4 - 3x^2}{2}$

$$f(x) = \frac{x^4 - 3x^2}{2}$$
; $-f(x) = -\frac{x^4 - 3x^2}{2} = \frac{-x^4 + 3x^2}{2}$

$$f(-x) = \frac{(-x)^4 - 3(-x)^2}{2} = \frac{x^4 - 3x^2}{2}$$
 que coincide con $f(x)$.

Luego, la función es par.

2) Estudiar si es par, impar o ninguna de las dos cosas: $y = 3x^3 - 2x$

Antes de comenzar, observemos que
$$(-x)^3 = (-x)(-x)(-x) = -x^3$$
. Pues bien:
 $f(x) = 3x^3 - 2x$; $-f(x) = -(3x^3 - 2x) = -3x^3 + 2x$
 $f(-x) = 3(-x)^3 - 2(-x) = 3[-x^3] + 2x = -3x^3 + 2x = -f(x)$

En consecuencia, la función es impar.

3) Estudiar si es par, impar o ninguna de las dos cosas: $y = \frac{3x^2}{2x^4 + 3}$

$$f(x) = \frac{3x^2}{2x^4 + 3};$$
 $-f(x) = -\frac{3x^2}{2x^4 + 3} = \frac{-3x^2}{2x^4 + 3}$

$$f(-x) = {3(-x)^2 \over 2(-x)^4 + 3} = {3x^2 \over 2x^4 + 3} = f(x)$$

Por lo que la función es par.

4) Estudiar si es par, impar o ninguna de las dos cosas: $y = x^2 - 4x + 3$

$$f(x) = x^2 - 4x + 3;$$
 $-f(x) = -(x^2 - 4x + 3) = -x^2 + 4x - 3$

 $f(x) = x^2 - 4x + 3;$ $-f(x) = -(x^2 - 4x + 3) = -x^2 + 4x - 3$ $f(-x) = (-x)^2 - 4(-x) + 3 = x^2 + 4x + 3$, que no coincide ni con f(x) ni con -f(x).

Por ello, esta función no es par ni impar.

5) Estudiar si es par, impar o ninguna de las dos cosas: $y = \frac{x^3}{2x^2}$

$$f(x) = \frac{x^3}{2x^2 - 8};$$
 $-f(x) = -\frac{x^3}{2x^2 - 8} = \frac{-x^3}{2x^2 - 8}$

$$f(-x) = \frac{(-x)^3}{2(-x)^2 - 8} = \frac{-x^3}{2x^2 - 8} = -f(x) \implies \underline{\text{Impar}}.$$

6) Estudiar si es par, impar o ninguna de las dos cosas: $y = \frac{x^2}{2x^2}$

$$f(x) = \frac{x^2}{2x-2};$$
 $-f(x) = -\frac{x^2}{2x-2}$

$$f(-x) = \frac{(-x)^2}{2(-x)-2} = \frac{x^2}{-2x-2} = \frac{x^2}{-(2x+2)} = -\frac{x^2}{2x+2}$$
 que no coincide ni con $f(x)$

ni con $-f(x) = -\frac{x^2}{2x-2}$, por lo que <u>no es par ni impar</u>.

7) Decir si $y = \frac{3x^5}{3x^3 - 2x}$ es *par*, *impar* o ninguna de las dos cosas.

$$f(x) = \frac{3x^5}{3x^3 - 2x}; \quad -f(x) = -\frac{3x^5}{3x^3 - 2x} = \frac{-3x^5}{3x^3 - 2x}$$
$$f(-x) = \frac{3(-x)^5}{3(-x)^3 - 2(-x)} = \frac{-3x^5}{-3x^3 + 2x} = \frac{-3x^5}{-(3x^3 - 2x)} = \frac{3x^5}{3x^3 - 2x}$$

Como consecuencia, f(x) = f(-x), por lo que estamos ante una función par

8) Estudiar si $y = \frac{x^2 + 3}{x^2 - 4}$ es *par*, *impar* o ninguna de las dos cosas.

$$f(x) = \frac{x^2 + 3}{x^2 - 4}; \quad -f(x) = -\frac{x^2 + 3}{x^2 - 4}$$

$$f(-x) = \frac{(-x)^2 + 3}{(-x)^2 - 4} = \frac{x^2 + 3}{x^2 - 4} \implies \text{ es } \text{Par}, \text{ ya que } f(-x) = f(x) \quad \forall x.$$

9) Estudiar si y = sen 4x es par, impar o ninguna de las dos cosas.

$$f(x) = \text{sen } 4x;$$
 $-f(x) = -\text{sen } 4x$
 $f(-x) = \text{sen } 4(-x) = \text{sen } (-4x) =$

Como g(x) = sen x es una función impar, se tiene que: $\forall t, g(-t) = -g(t)$, es decir: sen (-t) = - sen t. Por tanto, sen (-4x) = -sen 4x:

$$=$$
 - sen $4x = -f(x)$

Luego lo que tenemos es una función impar.

10) Estudiar si y = sen(4x + 1) es par, impar o ninguna de las dos cosas.

$$f(x) = \text{sen } (4x + 1);$$
 $-f(x) = -\text{sen } (4x + 1)$
 $f(-x) = \text{sen } (4(-x) + 1) = \text{sen } (-4x + 1) = \text{sen } [-(4x - 1)] = -\text{sen}(4x - 1)$

(el último paso es porque sen x es impar, a semejanza de lo hecho en el ejercicio anterior. Como no coincide con ninguna de las anteriores $\Rightarrow Ni \ par \ ni \ impar$.

11) Estudiar si $y = \text{sen}(4x^2 + 1)$ es par, impar o ninguna de las dos cosas.

$$f(x) = \text{sen } (4x^2 + 1);$$
 $-f(x) = -\text{sen } (4x^2 + 1)$
 $f(-x) = \text{sen } (4(-x)^2 + 1) = \text{sen } (4x^2 + 1) = f(x) \implies \text{es par.}$

12) Estudiar si $y = \cos 4x$ es par, impar o ninguna de las dos cosas.

$$f(x) = \cos 4x;$$
 $-f(x) = -\cos 4x$
 $f(-x) = \cos 4(-x) = \cos (-4x) =$

Como $g(x) = \cos x$ es una función par, se tiene que: $\forall t, g(-t) = g(t)$, es decir: $\cos (-t) = \cos t$. Por tanto, $\cos (-4x) = \cos 4x$:

$$= \cos 4x = f(x)$$

Luego lo que tenemos es una función par.

13) Estudiar si $y = \cos(4x + 1)$ es par, impar o ninguna de las dos cosas.

$$f(x) = \cos(4x + 1);$$
 $-f(x) = -\cos(4x + 1)$

 $f(-x) = \cos(4(-x) + 1) = \cos(-4x + 1) = \cos[-(4x - 1)] = \cos(4x - 1)$ El último paso se hace usando que $\cos x$ es par, de forma similar a como se procedió en el ejercicio anterior. Como no coincide con ninguna de las anteriores $\Rightarrow Ni \ par \ ni \ impar$.

14) Estudiar si $y = \cos(4x^2 + 1)$ es par, impar o ninguna de las dos cosas. $f(x) = \cos(4x^2 + 1)$; $-f(x) = -\cos(4x^2 + 1)$ $f(-x) = \cos(4(-x)^2 + 1) = \cos(4x^2 + 1) = f(x) \implies \text{es } \underline{\text{par}}.$