GEOMETRÍA EN EL ESPACIO

1. PUNTOS Y VECTORES

OPERACIÓN	TEORÍA Y FORMULACIÓN	EJEMPLO
Coordenadas de un punto	$P(p, p_y, p_z)$	P(2,-1,0)
Punto medio de un segmento	$M_{AB} = \frac{1}{2} \ a \ + b \ , a_y + b_y, a_z + b_z)$	$ \begin{array}{c} A(2,-1,3) \\ B(0,5,-1) \end{array} \to M\left(\frac{2+0}{2},\frac{-1+5}{2},\frac{3-1}{2}\right) \to M(1,2,1) $
Dividir un segmento en n partes iguales	$M_{AB} = \frac{1,2,,n}{n} \ a + b , a_y + b_y, a_z + b_z)$	$ \begin{cases} A(3,-1,2) \\ B(0,10,4) \end{cases} \to \begin{cases} M = \frac{1}{3} 3 + 0, -1 + 10,2 + 4) \to M(1,3,2) \\ N = \frac{2}{3} 3 + 0, -1 + 10,2 + 4) \to N(2,6,4) \end{cases} $
Coordenadas de un vector	$\overrightarrow{AB} = b - a , b_y - a_y, b_z - a_z)$	$ \begin{array}{c} A(2,-1,3) \\ B(0,4,-1) \end{array} \rightarrow \overrightarrow{AB} = B - A = 0,4,-1) - 2,-1,3) = -2,5,-4) $
Suma y resta de vectores	$\vec{u} + \vec{v} = (u + v, u_y + v_y, u_z + v_z)$ $\vec{u} - \vec{v} = u - v, u_y - v_y, u_z - v_z)$	$ \vec{u} \ 2, -3, 0) \vec{v}(1, -2, -1) $
Producto de un vector por un escalar	$\lambda \cdot \vec{u} = \lambda u_x, \lambda u_y, \lambda u_z)$	$\vec{u} \ 2, -3, 0) \rightarrow 3\vec{u} = 3 \cdot 2, -3, 0) = 6, -9, 0$
Módulo de un vector	$ \vec{u} = \sqrt{u^2 + u_y^2 + u_z^2}$	\vec{u} 2, -3,1) $\rightarrow \vec{u} = \sqrt{2^2 + (-3)^2 + 1^2} = \sqrt{14} u$
Vector unitario	$\overrightarrow{u_u} = \left(\frac{u}{ u }, \frac{u_y}{ u }, \frac{u_z}{ u }\right)$	\vec{u} 2, -3,1) $\rightarrow \vec{u_u} = \left(\frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{1}{\sqrt{14}}\right)$
Producto escalar entre dos vectores	Da como resultado un escalar el cual representa la medida de la proyección de un vector sobre otro $\vec{u} \cdot \vec{v} = u \cdot v + u_y \cdot v_y + u_z \cdot v_z$ $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{v} \cdot \cos \alpha$	$ \begin{vmatrix} \vec{u} & 2, -3, 0 \\ \vec{v} & (1, 2, -1) \\ \alpha & = 116, 93^{\circ} \end{vmatrix} \rightarrow \begin{aligned} \vec{u} \cdot \vec{v} &= 2 \cdot 1 + -3 \cdot 2 + 0 \cdot 1 = -4 \\ \vec{u} \cdot \vec{v} &= \sqrt{13} \cdot \sqrt{6} \cdot \cos 116, 93^{\circ} = -4 \end{aligned} $
Producto vectorial entre dos vectores	Da como resultado otro vector, de dirección perpendicular a éstos, sentido el de un tornillo que gire desde \vec{u} hasta \vec{v} y módulo $ \vec{u} \times \vec{v} = \vec{u} \cdot \vec{v} \cdot \sin \alpha$. $\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u & u_y & u_z \\ v & v_y & v_z \end{vmatrix}$	$ \begin{vmatrix} \vec{u} & 2,1,3 \\ \vec{v}(0,1,4) \end{vmatrix} \rightarrow \vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 1 & 3 \\ 0 & 1 & 4 \end{vmatrix} = \vec{i} - 8\vec{j} + 2\vec{k} \rightarrow \vec{w} = 1, -8,2) $
Producto mixto entre dos vectores	$\vec{u} \cdot \vec{v} \times \vec{w}) = \begin{vmatrix} u & u_y & u_z \\ v & v_y & v_z \\ w & w_y & w_z \end{vmatrix}$	$ \begin{vmatrix} \vec{u} & -2,1,3 \\ \vec{v}(0,-1,4) \\ \vec{w} & -1,2,1 \end{vmatrix} \rightarrow \vec{u} \cdot \vec{v} \times \vec{w} = \begin{vmatrix} -2 & 1 & 3 \\ 0 & -1 & 4 \\ -1 & 2 & 1 \end{vmatrix} = 11 $
Dependencia lineal entre tres vectores	Tres vectores son linealmente independientes, es decir, forman una base en \mathbb{R}^3 , si el determinante de la	$ \begin{vmatrix} \vec{u} & -2,1,3 \\ \vec{v}(0,-1,4) \\ \vec{w} & -1,2,1 \end{vmatrix} \rightarrow \begin{vmatrix} -2 & 1 & 3 \\ 0 & -1 & 4 \\ -1 & 2 & 1 \end{vmatrix} = 11 \rightarrow \begin{array}{c} \textit{Linealmente} \\ \textit{independientes} \\ \end{vmatrix} $
Dependencia lineal en función de un parámetro	matriz que forman es distinto de cero. La base más conocida en la base canónica: {(1,0,0); (0,1,0); (0,0,1)}.	$ \begin{vmatrix} \vec{u} - 2,1,3 \\ \vec{v}(0,-1,4) \\ \vec{w} - 2,0,k) \end{vmatrix} \rightarrow \begin{vmatrix} -2 & 1 & 3 \\ 0 & -1 & 4 \\ -2 & 0 & k \end{vmatrix} = 0 \rightarrow k = 7 \rightarrow \begin{cases} k = 7 \rightarrow L.D. \\ k \neq 7 \rightarrow L.I. \end{cases} $
Expresar un vector como combinación lineal de otros tres	Un vector siempre puede expresarse como combinación lineal de otros tres vectores siempre que éstos formen una base, es decir, no sean linealmente dependientes.	Expresar el vector $\vec{u} = 3,5,3$) como combinación lineal de $\vec{a}(1,1,0)$, $\vec{b}(0,2,1)$ y $\vec{c}(1,3,2)$. $3,5,3) = a(1,1,0) + b(0,2,1) + c(1,3,2) \rightarrow$ $\begin{cases} a+c=3\\ a+2b+3c=5\\ b+2c=3 \end{cases} \Rightarrow \begin{cases} a=1\\ b=-1\\ c=2 \end{cases} \rightarrow \vec{u} = \vec{a} - \vec{b} + 2\vec{c}$
Cambio de base de un vector	Un vector dado en un base concreta puede expresarse en otra base dada. El vector sigue siendo el mismo aunque no sus coordenadas.	Sea el vector $\vec{u} = 3,5,3$) en \mathbb{R}^3 en base canónica. Expresar sus coordenadas en la siguiente base $\{(1,1,0); (0,2,1); (1,3,2)\}$ $3,5,3) = a(1,1,0) + b(0,2,1) + c(1,3,2) \rightarrow$ $\begin{cases} a+c=3\\ a+2b+3c=5\\ b+2c=3 \end{cases} \Rightarrow \begin{cases} a=1\\ b=-1 \rightarrow \vec{u} \ 1,-1,2)\\ c=2 \end{cases}$

2. ECUACIONES DE LA RECTA

La ecuación de una recta se define mediante un punto P(a, b, c) y un vector director \vec{u} u_1, u_2, u_3). Veamos un ejemplo con el punto P(2, -1, 3) y el vector director $\vec{u}(3, 4, 5)$.

FORMA	ECUACIÓN	EJEMPLO
Vectorial	$r \equiv x, y, z) = a, b, c) + t(u_1, u_2, u_3)$	$r \equiv x, y, z) = 2, -1,3) + t(3,4,5)$
Paramétrica	$r \equiv \begin{cases} x = a + u_1 \cdot t \\ y = b + u_2 \cdot t \\ z = c + u_3 \cdot t \end{cases}$	$r \equiv \begin{cases} x = 2 + 3t \\ y = -1 + 4t \\ z = 3 + 5t \end{cases}$
Continua	$r \equiv \frac{x-a}{u_1} = \frac{y-b}{u_2} = \frac{z-c}{u_3}$	$r \equiv \frac{x-2}{3} = \frac{y+1}{4} = \frac{z-3}{5}$
General, cartesiana o implícita	$r \equiv \begin{cases} Ax + By + Cz + D = 0 \\ A'x + B'y + C'z + D' = 0 \end{cases}$	$\frac{x-2}{3} = \frac{y+1}{4} \to 4(x-2) = 3(y+1) \to 4x - 3y - 11 = 0$ $\frac{x-2}{3} = \frac{z-3}{5} \to 5(x-2) = 3(z-3) \to 5x - 3z - 1 = 0$ $r = \begin{cases} 4x - 3y - 11 = 0\\ 5x - 3z - 1 = 0 \end{cases}$

- Ecuación de la recta conocidos dos puntos: la ecuación de la recta también puede definirse mediante dos puntos A y B ya que con ellos puede obtenerse el vector director \overrightarrow{AB} o \overrightarrow{BA} .
- **Pertenencia de un punto a una recta:** para comprobar si un punto pertenece a una recta basta con sustituir sus coordenadas en la "x", la "y" y la "z" de la recta y comprobar que se verifican su/s ecuación/es.
- Alineación de puntos: para comprobar si tres puntos están alineados, se toman dos de ellos, se halla la recta que forman y se sustituye el tercer punto en dicha recta. Si pertenece es que los tres puntos están alineados.

3. ECUACIONES DEL PLANO

La ecuación de un plano se define mediante un punto P(a,b,c) y dos vectores directores \vec{u} $u_1,u_2,u_3)$ y $\vec{v}(v_1,v_2,v_3)$. Veamos un ejemplo con el punto P(2,-1,3) y los vectores $\vec{u}(3,4,5)$ y $\vec{v}(1,0,-2)$.

FORMA	ECUACIÓN	EJEMPLO
Vectorial	$\pi \equiv x, y, z) = a, b, c) + \alpha(u_1, u_2, u_3) + \beta(v_1, v_2, v_3)$	$\pi \equiv x, y, z) = 2, -1, 3) + \alpha(3, 4, 5) + \beta(1, 0, -1)$
Paramétrica	$\pi \equiv \begin{cases} x = \alpha + u_1 \cdot \alpha + v_1 \cdot \beta \\ y = b + u_2 \cdot \alpha + v_1 \cdot \beta \\ z = c + u_3 \cdot \alpha + v_1 \cdot \beta \end{cases}$	$\pi \equiv \begin{cases} x = 2 + 3\alpha + \beta \\ y = -1 + 4\alpha \\ z = 3 + 5\alpha - \beta \end{cases}$
General, cartesiana o implícita	$\begin{vmatrix} x - a & y - b & z - c \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = 0 \to \pi \equiv Ax + By + Cz + D = 0$	$\begin{vmatrix} x-2 & y+1 & z-3 \\ 3 & 4 & 5 \\ 1 & 0 & -1 \end{vmatrix} = 0 \to \pi \equiv x - 2y + z - 7 = 0$
Segmentaria o canónica	$ \begin{array}{c} a, 0, 0) \\ 0, b, 0) \\ 0, 0, c) \end{array} \rightarrow \pi \equiv \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 $	$\begin{array}{c} 2,0,0) \\ 0,-1,0) \rightarrow \pi \equiv \frac{x}{2} - \frac{y}{1} + \frac{z}{3} = 1 \\ 0,0,3) \end{array}$

- Ecuación del plano conocidos tres puntos: la ecuación del plano también puede definirse mediante tres puntos A, B y C ya que con ellos puede obtenerse dos vectores directores, por ejemplo, \overrightarrow{AB} y \overrightarrow{AC} .
- **Pertenencia de un punto a un plano:** para comprobar si un punto pertenece a un plano basta con sustituir sus coordenadas en la "x", la "y" y la "z" del plano y comprobar que se verifican su/s ecuación/es.
- Pertenencia de una recta a un plano: una recta pertenece a un plano si dos puntos arbitrarios de ésta pertenecen a dicho plano.
- **Coplaneidad de puntos:** para comprobar si cuatro puntos son coplanarios (que pertenecen a un mismo plano), se toman tres de ellos, se halla el plano que forman y se sustituye el cuarto punto en dicho plano. Si pertenece es que los cuatro puntos son coplanarios.

4. POSICIÓN RELATIVA

4.1. Posición relativa entre dos rectas

Opción 1:

$$\begin{cases} x = x_1 + u_1 \cdot \alpha \\ y = y_1 + u_2 \cdot \alpha \\ z = z_1 + u_3 \cdot \alpha \end{cases} \; \begin{cases} x = x_2 + v_1 \cdot \beta \\ y = y_2 + v_2 \cdot \beta \\ z = z_2 + v_3 \cdot \beta \end{cases} \; \rightarrow \; A = \begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \\ u_3 & v_3 \end{pmatrix} \; ; \; A^* = \begin{pmatrix} u_1 & v_1 & x_2 - x_1 \\ u_2 & v_2 & y_2 - y_1 \\ u_3 & v_3 & z_2 - z_1 \end{pmatrix}$$

Rangos	Tipo de sistema	Posición relativa	Solución
$rg(A) = rg(A^*) = 2$	Compatible determinado	Secantes	Un punto
$rg(A) = rg(A^*) = 1$	Compatible indeterminado	Coincidentes	La recta
$rg(A) = 1 \neq rg(A^*) = 2$	Incompatible	Paralelas	Sin solución
$rg(A) = 2 \neq rg(A^*) = 3$	Incompatible	Se cruzan	Sin solución

Opción 2:

$$r \equiv \begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \\ s \equiv \begin{cases} A_3x + B_3y + C_3z + D_3 = 0 \\ A_4x + B_4y + C_4z + D_4 = 0 \end{cases} \rightarrow A = \begin{pmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \\ D_1 & D_2 & D_3 \end{cases}; A^* = \begin{pmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \\ D_1 & D_2 & D_3 \end{cases} \begin{vmatrix} A_4 \\ B_4 \\ C_4 \\ D_1 & D_2 & D_3 \end{vmatrix}$$

Rangos	Tipo de sistema	Posición relativa	Solución	
$rg(A) = rg(A^*) = 3$	Compatible determinado	Secantes	Un punto	
$rg(A) = rg(A^*) = 2$	Compatible indeterminado	Coincidentes	La recta	
$rg(A) = 2 \neq rg(A^*) = 3$	Incompatible	Paralelas	Sin solución	
$rg(A) = 3 \neq rg(A^*) = 4$	Incompatible	Se cruzan	Sin solución	

4.2. Posición relativa entre dos planos

$$\begin{array}{ll} \pi_1 \equiv A_1 x + B_1 y + C_1 z + D_1 = 0 \\ \pi_2 \equiv A_2 x + B_2 y + C_2 z + D_2 = 0 \end{array} \rightarrow \quad A = \begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix} \; ; \; \; A^* = \begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix} \; D_2 \end{pmatrix}$$

Estudio de rangos	Tipos de sistemas	Posición relativa	Solución
$rg(A) = rg(A^*) = 2$ Compatible indeterminad		Secantes	Una recta
$rg(A) = rg(A^*) = 1$	Compatible indeterminado	Coincidentes	El plano
$rg(A) = 1 \neq rg(A^*) = 2$	Incompatible	Paralelos	Sin solución

4.3. Posición relativa entre una recta y un plano

$$r \equiv \begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \\ \pi \equiv A_3x + B_3y + C_3z + D_3 = 0 \end{cases} \rightarrow A = \begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{pmatrix} \; ; \; A^* = \begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{pmatrix} D_1^*$$

Estudio de rangos	Tipos de sistemas	Posición relativa	Solución
$rg(A) = rg(A^*) = 3$ Compatible determinado		Secantes	Un punto
$rg(A) = rg(A^*) = 2$	Compatible indeterminado	Coincidentes	La recta
$rg(A) = 2 \neq rg(A^*) = 3$	Incompatible	Paralelos	Sin solución

4.4. Posición relativa entre tres planos

$$\begin{array}{l} \pi_1 \equiv A_1 x + B_1 y + C_1 z + D_1 = 0 \\ \pi_2 \equiv A_2 x + B_2 y + C_2 z + D_2 = 0 \\ \pi_3 \equiv A_3 x + B_3 y + C_3 z + D_3 = 0 \end{array} \rightarrow A = \begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{pmatrix} \; ; \; A^* = \begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{pmatrix} D_1 \end{pmatrix}$$

Estudio de rangos	Tipos de sistemas	Posición relativa	Solución
$rg(A) = rg(A^*) = 3$	SCD	Los tres secantes	Un punto
rg (A) = $2 \neq rg$ (A*) = 3 (sin dos ecuaciones proporcionales)	SI	Los tres secantes	Sin solución (Tres rectas)
rg (A) = $2 \neq$ rg (A*) = 3 (con dos ecuaciones proporcionales)	SI	Dos paralelos y uno secante a ellos	Sin solución (Dos rectas)
$rg(A) = rg(A^*) = 2$ (sin dos ecuaciones proporcionales)	SCI	Los tres secantes	Una recta
$rg(A) = rg(A^*) = 2$ (con dos ecuaciones proporcionales)	SCI	Dos coincidentes y uno secante a ellos	Una recta
rg (A) = 1 \neq rg (A*) = 2 (sin dos ecuaciones proporcionales)	SI	Los tres paralelos	Sin solución
rg (A) = 1 \neq rg (A*) = 2 (con dos ecuaciones proporcionales)	SI	Dos coincidentes y uno paralelo a ellos	Sin solución (Un plano)
$rg(A) = rg(A^*) = 1$	SCI	Los tres coincidentes	El plano

5. ÁNGULOS

ÁNGULO ENTRE	FÓRMULA	PROCEDIMIENTO
Dos vectores	$\alpha = \arccos \frac{\vec{u} \cdot \vec{v}}{ \vec{u} \cdot \vec{v} }$	 Hallar el producto escalar \$\vec{u} \cdot \vec{v} = u_x \cdot v_x + u_y \cdot v_y + u_z \cdot v_z\$. Sustituirlo en la otra fórmula (\$\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{v} \cdot \cdot
Dos rectas		Hallar el ángulo que forman sus dos vectores directores como ángulo entre dos vectores.
Dos planos	$\alpha = \frac{ A \cdot A' + B \cdot B' + C \cdot C' }{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{A'^2 + B'^2 + C'^2}}$	Hallar el ángulo que forman sus dos vectores normales como ángulo entre dos vectores.
Una recta y un plano	$\alpha = \frac{ A \cdot u_1 + B \cdot u_2 + C \cdot u_3 }{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{u_1^2 + u_2^2 + u_3^2}}$	 Hallar el ángulo que forman el vector director de la recta y el vector normal del plano como ángulo entre dos vectores. Hallar su complementario (90 – α).

6. DISTANCIAS

DISTANCIA ENTRE	FÓRMULA	PROCEDIMIENTO
Dos puntos	$d(P,Q) = \sqrt{\left(x_{\overrightarrow{PQ}}\right)^2 + \left(y_{\overrightarrow{PQ}}\right)^2 + \left(z_{\overrightarrow{PQ}}\right)^2}$	1. Hallar el vector \overrightarrow{PQ} y calcular su módulo.
Un punto y un plano	$d(P,\pi) = \frac{ Ax + By + Cz + D }{\sqrt{A^2 + B^2 + C^2}}$	 Hallar la recta n normal a π y que pase por P. Hallar I, punto intersección de n y π. Hallar la distancia de P a I como distancia entre dos puntos.
Un punto y una recta	$d(P,r) = \frac{\left \overrightarrow{AP} \times \overrightarrow{v} \right }{\left \overrightarrow{v} \right }$	 Hallar el plano π normal a r y que pase por P. Hallar I, punto intersección de r y π. Hallar la distancia de P a I como distancia entre dos puntos.
Dos planos paralelos	$d(\pi, \alpha) = \frac{ D' - D }{\sqrt{A^2 + B^2 + C^2}}$	Tomar un punto arbitrario de uno de los planos. Calcular la distancia de dicho punto al otro plano como distancia de un punto a un plano.
Dos rectas paralelas		Tomar una de las dos rectas y un punto arbitrario de la otra. Hallar la distancia de un punto a una recta.
Un plano y una recta paralela		Tomar el plano y un punto arbitrario de la recta. Hallar la distancia como distancia de un punto a un plano.
Dos rectas que se cruzan (Perpendicular común)	$d(r,s) = \frac{\left \overrightarrow{AB} \cdot (\overrightarrow{u} \times \overrightarrow{v}) \right }{\left \overrightarrow{u} \times \overrightarrow{v} \right }$	 Hallar el vector w perpendicular a u y v mediante el producto vectorial. Hallar el plano π que contenga a u y w. Hallar el plano β que contenga a v y w. Hallar la recta t, perpendicular común (intersección de π y β). Hallar P y Q, puntos intersección de t con r y t con s respectivamente. Hallar la distancia de P a Q como distancia entre dos puntos.

7. EQUIDISTANCIAS

EQUIDISTANCIA	DATOS	RESOLUCIÓN
Puntos de una recta que distan de un punto un número de unidades dado	$P(2,3,1)$ $r \equiv \begin{cases} x = -1 + t \\ y = -2 + t \\ z = t \end{cases}$ $Distancia = \sqrt{8} u$	1. Hallar el punto R genérico de r y obtener el vector \overrightarrow{RP} $R(-1+t,-2+t,t) \to \overrightarrow{RP} = 3-t,5-t,1-t)$ 2. Igualar la distancia de R a P a $\sqrt{8}$, despejar t y hallar el punto $\sqrt{(3-t)^2+5-t)^2+1-t} = \sqrt{8} \to t = 3 \to S(2,1,3)$
Puntos de una recta que distan de un plano un número de unidades dado	$\pi \equiv x - 2y + z - 2 = 0$ $r \equiv \begin{cases} x = -1 + t \\ y = -2 + t \\ z = 2t \end{cases}$ $Distancia = \sqrt{3} u$	1. Igualar la distancia del punto R genérico de la recta al plano π a $\sqrt{3}$ $d(R,\pi) = \frac{ (-1+t)-2(-2+t)+2t)-2 }{\sqrt{1^2+-1)^2+1^2}} = \sqrt{3} \rightarrow \begin{cases} t=2\\ t=-4 \end{cases}$ 2. Sustituir t en la recta y obtener los puntos $S_1 \ 1,0,4) \ y \ S_2 \ -5,-6,-8)$
Punto de una recta que equidiste de otros dos puntos conocidos	$P(2,1,-1); \ Q(-2,0,5)$ $r \equiv \begin{cases} x = 1 + 2t \\ y = 2 - t \\ z = -1 + t \end{cases}$	1. Hallar el punto R genérico de r y obtenger los vectores \overrightarrow{RP} y \overrightarrow{RQ} $R(1+2t,2-t,-1+t) \rightarrow \begin{cases} \overrightarrow{RP} = 1-2t,-1+t,-t) \\ \overrightarrow{RQ} = -3-2t,-2+t,6-t) \end{cases}$ 2. Igualar la distancia de R a p y la distancia de R a Q $\sqrt{(1-2t)^2+-1+t)^2+-t)^2} = \sqrt{(-3-2t)^2+-2-t)^2+(6-t)^2}$ 3. Despejar t y sustituirlo en la recta para obtener el punto $t=-4,7\rightarrow R(10'4,-2'7,3'7)$

8. ÁREAS Y VOLÚMENES

PARALELOGRAMO	TRIÁNGULO	PARALELEPÍPEDO	TETRAEDRO
$A = \vec{u} \times \vec{v} $	$A = \frac{ \vec{u} \times \vec{v} }{2}$	$V_P = \vec{u} \cdot \vec{v} x \vec{w})$	$V_T = \frac{\vec{u} \cdot \vec{v} \times \vec{w})}{6}$
₩ ₩	₩ (a)	Ū ₩	ū v v v v v v v v v v v v v v v v v v v

9. INTERSECCIONES

INTERSECCIÓN	DATOS	RESOLUCIÓN
Dos rectas	$r \equiv \begin{cases} x = 3 + 2t \\ y = 4 - 3t \\ z = 5 + 4t \end{cases} ; s \equiv \begin{cases} x = 1 - 2s \\ y = 7 + 4s \\ z = 1 - 3s \end{cases}$	$3+2t=1-2s \atop 4-3t=7+4s \atop 5+4t=1-3s $ $\rightarrow 2t+2s=-2 \atop 3t+4s=-3 $ $\rightarrow \begin{cases} t=-1 \\ s=0 \end{cases} \rightarrow \begin{cases} x=1 \\ y=7 \\ z=1 \end{cases}$ Sustituimos t y s e n la 3^a ecuación para verificar que se cortan
Dos planos	$\alpha \equiv 2x + 3y - z + 1 = 0$ $\beta \equiv x - 3y + 5z - 2 = 0$	$r \equiv \begin{cases} 2x + 3y - z + 1 = 0\\ x - 3y + 5z - 2 = 0 \end{cases}$
Recta y plano	$r \equiv \begin{cases} x = 3 + 2t \\ y = 4 - 3t \\ z = 5 + 4t \end{cases}$ $\pi \equiv 2x + 3y - z - 4 = 0$	$2(3+2t) + 3(4-3t) - (5+4t) - 4 = 0 \rightarrow t = 1$ $\Rightarrow r \equiv \begin{cases} x = 3 + 2 \cdot 1 = 5 \\ y = 4 - 3 \cdot 1 = 1 \Rightarrow P(5,1,9) \\ z = 5 + 4 \cdot 1 = 9 \end{cases}$
Plano con los ejes de coordenadas	$\pi \equiv x + 3y + 2z - 6 = 0$	Eje OX: $(x,0,0) \rightarrow x + 3 \cdot 0 + 2 \cdot 0 - 6 = 0 \rightarrow x = 6 \rightarrow 6,0,0)$ Eje OY: $(0,y,0) \rightarrow 0 + 3y + 2 \cdot 0 - 6 = 0 \rightarrow y = 2 \rightarrow 0,2,0)$ Eje OZ: $(0,0,z) \rightarrow 0 + 3 \cdot 0 + 2z - 6 = 0 \rightarrow z = 3 \rightarrow 0,0,3)$

10. PARALELISMO Y PERPENDICULARIDAD

PARALELISMO	DATOS	RESOLUCIÓN
Recta paralela a otra recta y que pase por un punto	$P(-1,0,2)$ $r \equiv \begin{cases} x = 3 + 2t \\ y = 4 - 3t \\ z = 5 + 4t \end{cases}$	1. El vector director de r lo es también de s: $ \vec{v} = (1,0,2) \\ \vec{v} = (2,-3,4) $ $\Rightarrow s \equiv \begin{cases} x = -1 + 2s \\ y = -3s \\ z = 2 + 4s \end{cases} $
Plano paralelo a otro plano y que pase por un punto	$P(-1,0,2)$ $\alpha \equiv 2x - 3y + 4z + 1 = 0$	1. El vector normal de α lo es también de β : $\beta \equiv 2x - 3y + 4z + D = 0$ 2. Sustituir el punto, despejar D y obtener el plano $\rightarrow 2 \cdot (-1) - 3 \cdot 0 + 4 \cdot 2 + D = 0 \rightarrow D = -6 \rightarrow$ $\pi \equiv 2x - 3y + 4z - 6 = 0$
PERPENDICULARIDAD	DATOS	RESOLUCIÓN
Recta perpendicular a un plano y que pase por un punto	$P(-1,0,2)$ $\pi \equiv 2x + 3y - z + 1 = 0$	1. El vector normal del plano es director de la recta:
Plano perpendicular a una recta y que pase por un punto	$P(-1,0,2)$ $r \equiv \begin{cases} x = 3 + 2t \\ y = 4 - 3t \\ z = 5 + 4t \end{cases}$	1. El vector director de la recta es normal del plano: $\pi \equiv 2x - 3y + 4z + D = 0$ 2. Sustituir el punto, despejar D y obtener el plano $\rightarrow 2 \cdot (-1) - 3 \cdot 0 + 4 \cdot 2 + D = 0 \rightarrow D = -6 \rightarrow$ $\pi \equiv 2x - 3y + 4z - 6 = 0$
Recta perpendicular a otra recta a la cual corte y que pase por un punto	$P(0,1,-3)$ $r \equiv \begin{cases} x = 3 + 2t \\ y = 4 - 3t \\ z = 5 + 4t \end{cases}$	1. Hallar el plano π perpendicular a r y que pase por P $\pi \equiv 2x - 3y + 4z + D = 0 \rightarrow 0$ $\to 2 \cdot 0 - 3 \cdot 1 + 4 \cdot -3) + D = 0 \rightarrow D = 15 \rightarrow 0$ $\pi \equiv 2x - 3y + 4z + 15 = 0$ 2. Hallar Q , punto intersección entre r y π $2(3+2t) - 3(4-3t) + 4(5+4t) + 15 = 0 \rightarrow t = -1$ $\begin{cases} x = 1 \\ y = 7 \rightarrow Q(1,7,1) \\ z = 1 \end{cases}$ 3. Hallar la recta s definida por los puntos P y Q $\begin{cases} P(0,1,-3) \\ \overrightarrow{PQ} = 1,6,4 \end{cases} \rightarrow s \equiv \begin{cases} x = s \\ y = 1+6s \\ z = -3+4s \end{cases}$

11. SIMETRÍA

SIMETRÍA	DATOS	RESOLUCIÓN
Punto simétrico de otro respecto a un punto	P(2,3,1) M(0,2,3) P M P	1. Hallar P'simétrico de P sabiendo que M es punto medio de ellos $ P(2,3,1) \atop M(0,2,3) \atop P'(a,b,c) \rbrace \rightarrow \begin{cases} \frac{2+a}{2} = 0 \rightarrow a = -2 \\ \frac{3+b}{2} = 2 \rightarrow b = 1 \rightarrow P'(-2,1,5) \\ \frac{1+c}{2} = 3 \rightarrow c = 5 \end{cases} $
Punto simétrico de otro respecto a una recta	$P(2,3,1)$ $r \equiv \begin{cases} x = -1 + t \\ y = -2 + 4t \\ z = 3t \end{cases}$	1. Hallar el plano π perpendicular a r y que pase por P. $\pi \equiv x + 4y + 3z + D = 0 \rightarrow 2 + 4 \cdot 3 + 3 \cdot 1 + D = 0 \rightarrow D = -17 \rightarrow \pi$ $\equiv x + 4y + 3z - 17 = 0$ 2. Hallar el punto M intersección de r y π $-1 + t) + 4(-2 + 4t) + 3(3t) - 17 = 0 \rightarrow t = 1 \rightarrow M(0,2,3)$ 3. Hallar P'simétrico de P sabiendo que M es punto medio de ellos $P(2,3,1) \atop M(0,2,3) \atop P'(a,b,c)} \rightarrow \begin{cases} \frac{2+a}{2} = 0 \rightarrow a = -2 \\ \frac{3+b}{2} = 2 \rightarrow b = 1 \rightarrow P'(-2,1,5) \\ \frac{1+c}{2} = 3 \rightarrow c = 5 \end{cases}$
Punto simétrico de otro respecto a un plano	$P(4,-1,0)$ $\pi \equiv x - y - z - 2 = 0$	1. Hallar la recta r perpendicular a π y que pase por P $P(4,-1,0) \atop \vec{v}(1,-1,-1) \rbrace \rightarrow \begin{cases} x=4+t \\ y=-1-t \\ z=-t \end{cases}$ 2. Hallar el punto M intersección de π y r $4+t)1-t)t)-2=0 \rightarrow t=-1 \rightarrow M(3,0,1)$ 3. Hallar P'simétrico de P sabiendo que M es punto medio de ellos $P(4,-1,0) \atop M(3,0,1) \atop P'(a,b,c) \rbrace \rightarrow \begin{cases} \frac{4+a}{2}=3 \rightarrow a=2 \\ \frac{-1+b}{2}=0 \rightarrow b=1 \rightarrow P'(2,1,2) \\ \frac{0+c}{2}=1 \rightarrow c=2 \end{cases}$

12. COMPLETAR FIGURAS

FIGURA	DATOS	RESOLUCIÓN
Triángulo rectángulo conocidos dos vértices y la recta que contiene al tercero (Similar a: Rectángulo conocidos dos vértices consecutivos y la recta que contiene a otro)	$B(2,1,-1); C(-2,0,5)$ $r = \begin{cases} x = 1 + 2t \\ y = 2 - t \\ z = -1 + t \end{cases}$ Rectángulo en A	$1. \textit{Hallar el punto genérico de r y obtenger los vectores } \overrightarrow{AB} \ y \ \overrightarrow{AC}$ $A(1+2t,2-t,-1+t) \rightarrow \begin{cases} \overrightarrow{AB} = 1-2t,-1+t,-t) \\ \overrightarrow{AC} = -3-2t,-2+t,6-t) \end{cases}$ $2. \textit{Al ser perpendiculares, el producto escalar entre ellos debe ser nulo}$ $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0 \rightarrow 1-2t)(-3-2t)+-1+t)(-2+t)+-t)(6-t)=0$ $3. \textit{Obtener t, sustituirla en el punto genérico y hallar las 2 soluciones}$ $\rightarrow 6t^2-5t-1=0 \rightarrow \begin{cases} t_1=1\rightarrow A_1 \ 3,1,0) \\ t_2=\frac{-1}{6}\rightarrow A_2\left(\frac{2}{3},\frac{13}{6},\frac{-7}{6}\right) \end{cases}$
Paralelogramo conocidos tres vértices	A(3,1,0) $B(2,1,-1)$ $C(-2,0,5)$	1. Hallar las rectas que contienen a los lados AD y CD $ \frac{A(3,1,0)}{\overrightarrow{BC}-4,-1,6} \rightarrow r \equiv \begin{cases} x=3-4t \\ y=1-t \\ z=6t \end{cases}; \frac{C(-2,0,5)}{\overrightarrow{BA}} \rightarrow s \equiv \begin{cases} x=-2+s \\ y=0 \\ z=5+s \end{cases} $ 2. Hallar el punto D, intersección de ambas rectas $3-4t=-2+s \\ 1-t=0 \\ 6t=5+s \end{cases} \rightarrow \begin{cases} t=1 \\ s=1 \end{cases} \rightarrow \begin{cases} x=-1 \\ y=0 \\ z=6 \end{cases}$
Paralelogramo conocidos dos vértices consecutivos y el centro	A(3,1,0) $B(1,1,-2)$ $O(1,0,1)$	1. Hallar C simétrico de A sabiendo que O es punto medio de ellos $ A(3,1,0) \\ O(1,0,1) \\ C(a,b,c) \} \rightarrow \begin{cases} \frac{3+a}{2} = 1 \rightarrow a = -1 \\ \frac{1+b}{2} = 0 \rightarrow b = -1 \rightarrow P'(-1,-1,2) \\ \frac{0+c}{2} = 1 \rightarrow c = 2 \\ 2. Realizar el mismo procedimiento para D \rightarrow D(1,-1,4)$