Prueba final A

Nombre: Apellidos:

Curso: Grupo: Fecha:

- 1. Sabiendo que $\begin{vmatrix} x & y & z \\ 1 & 0 & -3 \\ 1 & 1 & 1 \end{vmatrix} = 42$, calcula razonadamente el valor del determinante $\begin{vmatrix} x & z & y \\ 5 & 5 & 5 \\ 10 & 6 & 9 \end{vmatrix}$.
- 2. Discute el sistema $\begin{cases} 2x + y z = 0 \\ ax y z = a 1 \text{ y resuélvelo solamente para el caso } a = 1. \\ 3x 2az = a 1 \end{cases}$
- 3. Se considera la ecuación matricial AX 2X = B, donde A y B son las matrices siguientes:

$$A = \begin{pmatrix} 4 & 0 & -5 \\ -1 & 5 & 0 \\ 1 & -2 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$$

Resuélvela despejando convenientemente la matriz X y sustituyendo posteriormente los datos.

- 4. Dada la superficie esférica de centro C(1, 2, 0) y tangente al plano π : 2x + y 2z + 20 = 0, se pide hallar:
 - a) La ecuación general de la superficie esférica.
 - b) Las coordenadas del punto de tangencia.
 - c) El área de la superficie esférica y el volumen de la esfera que delimita.
- 5. Los planos π_1 : x-y-z+1=0, π_2 : x-3y-5z+3=0 se cortan en una recta r. Determina:
 - a) La ecuación paramétrica de dicha recta.
 - b) El ángulo que forman dichos planos.
 - c) La ecuación de otro plano que pasa por P(3, -5, 3) y corta perpendicularmente a los planos dados.
- **6.** Dado el punto P(-3, 1, 0) y la recta r: (1 + 3t, -1 + t, -2), determina:
 - a) La ecuación del plano perpendicular a la recta y que pasa por P.
 - b) La distancia del punto a la recta.
 - c) Las coordenadas del punto simétrico de P respecto de la recta r.
- 7. Halla los valores de a y de b para que la función $f(x) = \begin{cases} a + bx x^2 & \text{si } x \leq 2 \\ x^2 + ax + 8 & \text{si } x > 2 \end{cases}$ cumpla las hipótesis del teorema del valor medio en el intervalo [-1, 4] y determina el valor o valores que verifican la tesis del teorema.
- 8. Se considera la función real de variable real $f(x) = \frac{x-1}{2+x}$.
 - a) Estudia su monotonía y curvatura.
 - b) Representa gráficamente la función determinando además sus asíntotas.
- 9. Resuelve las siguientes integrales:

a)
$$\int \frac{3x}{\sqrt{5+3x^2}} \, dx$$

b)
$$\int \frac{x+4}{x^2-3x} dx$$

- 10. Se considera el recinto acotado y limitado por la función $f(x) = e^{-x}$, los ejes de coordenadas y la recta x = 1.
 - a) Determina el área de dicho recinto.
 - b) Halla el volumen del cuerpo de revolución que se genera cuando el recinto anterior gira alrededor del eje de abscisas.

Soluciones

1.
$$\begin{vmatrix} x & z & y \\ 5 & 5 & 5 \\ 10 & 6 & 9 \end{vmatrix} = 5 \begin{vmatrix} x & z & y \\ 1 & 1 & 1 \\ 10 & 6 & 9 \end{vmatrix} = -5 \begin{vmatrix} x & z & y \\ 10 & 6 & 9 \\ 1 & 1 & 1 \end{vmatrix} =$$

$$= -5 \begin{vmatrix} x & z & y \\ 10 - 9 & 6 - 9 & 9 - 9 \\ 1 & 1 & 1 \end{vmatrix} = 5 \begin{vmatrix} x & y & z \\ 1 & 0 & -3 \\ 1 & 1 & 1 \end{vmatrix} = 5 \cdot 42 = 210$$

2.
$$|A| = 2(a + 3)(a - 1)$$
. Por tanto:

Si $a \neq -3$ y $a \neq 1 \Rightarrow rg(A) = rg(A^*) = 3 = número de$ incógnitas

Sistema compatible determinado.

Si
$$a = -3 \Rightarrow rg(A) = 2 \neq rg(A^*) = 3 \Rightarrow$$

\$\Rightarrow\$ Sistema incompatible.

Si $a = 1 \Rightarrow rg(A) = rg(A^*) = 2 < número de incógni$ tas

Sistema compatible indeterminado con un grado de libertad (uniparamétrico). La solución se escribe $x = -2\lambda$, $y = \lambda$, $z = -3\lambda$, con $\lambda \in \mathbb{R}$.

3.
$$AX - 2X = B \Rightarrow (A - 2I)X = B \Rightarrow X = (A - 2I)^{-1}B$$

$$A - 2I = \begin{pmatrix} 2 & 0 - 5 \\ -1 & 3 & 0 \\ 1 - 2 & -1 \end{pmatrix}; \qquad |A - 2I| = -1.$$

Por tanto, resulta
$$(A - 2I)^{-1} = \begin{pmatrix} 3 & -10 & -15 \\ 1 & -3 & -5 \\ 1 & -4 & -6 \end{pmatrix} \Rightarrow$$

$$\Rightarrow X = \begin{pmatrix} 3 & -10 & -15 \\ 1 & -3 & -5 \\ 1 & -4 & -6 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix} = \begin{pmatrix} -62 & -62 & -62 \\ -20 & -20 & -20 \\ -25 & -25 & -25 \end{pmatrix}$$

4. a) Radio
$$r = d(C, \pi) = \frac{|2+2+20|}{\sqrt{4+1+4}} = 8$$

$$(x-1)^2 + (y-2)^2 + z^2 = 64 \Leftrightarrow x^2 + y^2 + z^2 - 2x - 4y = 59$$

b)
$$T = \pi \cap r$$
 donde $r(C, \vec{n}_{\pi})$:
$$\begin{cases} x = 1 + 2\lambda \\ y = 2 + \lambda \\ z = -2\lambda \end{cases}$$

$$2(1+2\lambda)+(2+\lambda)-2(-2\lambda)+20=0 \Rightarrow$$

$$\Rightarrow \lambda = \frac{8}{3} \Rightarrow T\left(\frac{19}{3}, \frac{14}{3}, -\frac{16}{3}\right)$$

c)
$$A = 4\pi r^2 = 256\pi$$
, $V = \frac{4}{3}\pi r^3 = \frac{2048}{3}\pi$

5. a)
$$\begin{cases} x - y - z = -1 \\ x - 3y - 5z = -3 \end{cases} \Rightarrow r$$
: $\begin{cases} x = -\lambda \\ y = 1 - 2\lambda \\ z = \lambda \end{cases}$

b)
$$\cos \alpha = \frac{|\vec{n}_1 \cdot \vec{n}_2|}{|\vec{n}_1||\vec{n}_2|} = \frac{1+3+5}{\sqrt{3}\sqrt{35}} \Rightarrow \alpha = 28^{\circ} \ 33' \ 39''$$

c) Los vectores \vec{n}_1 y \vec{n}_2 , normales a π_1 y π_2 respectivamente, son directores del plano π :

$$\pi = \begin{vmatrix} x - 3 & y + 5 & z - 3 \\ 1 & -1 & -1 \\ 1 & -3 & -5 \end{vmatrix} = 0 \Rightarrow \pi \colon x + 2y - z = -10$$

6. a)
$$\pi$$
: $3x + y + d = 0$. Como $P \in \pi \Rightarrow d = 8 \Rightarrow \pi$: $3x + y + 8 = 0$.

b)
$$M = \pi \cap r \Rightarrow 3(1 + 3t) + (-1 + t) + 8 = 0 \Rightarrow t = -1 \Rightarrow M(-2, -2, -2)$$

La distancia pedida será:

$$d(P,r) = |\overrightarrow{PM}| = \sqrt{1^2 + (-3)^2 + (-2)^2} = \sqrt{14} \text{ u}$$

c) M es el punto medio del segmento PP', donde P'(x, y) es el simétrico de P buscado. Por tanto:

$$-2 = \frac{x-3}{2} \Rightarrow x = -1; -2 = \frac{x+1}{2} \Rightarrow y = -5,$$

$$-2 = \frac{z}{2} \Rightarrow z = -4 \Rightarrow P'(-1, -5, -4)$$

7.
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) \Rightarrow a + 2b - 4 = 2a + 12 \Rightarrow a = 2b - 16$$

$$f'(2^{-}) = f'(2^{+}) \Rightarrow b = a + 8 \Rightarrow a = 0 \text{ y } b = 8$$

La tesis del teorema dice que:

$$\exists c \in (-1, 4) / \frac{f(4) - f(-1)}{4 - (-1)} = f'(c) \Rightarrow \frac{33}{5} = f'(c) \Rightarrow$$

$$\Rightarrow \begin{cases} c < 2, & 8 - 2c = \frac{33}{5} \Rightarrow c = \frac{7}{10} \\ c > 2, & 2c = \frac{33}{5} \Rightarrow c = \frac{33}{10} \end{cases}$$

8.
$$D = R - \{-2\}$$

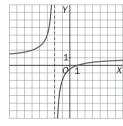
$$f'(x) = \frac{3}{(2+x)^2} > 0$$
; $f''(x) = \frac{-6}{(2+x)^3} \neq 0$, $\forall x \in D$.

No tiene extremos relativos ni puntos de inflexión. Creciente en todo D.

Si $x \in (-\infty, -2)$ es cóncava hacia arriba y en $(-2, +\infty)$ es cóncava hacia abajo.

Asíntota vertical: x = -2.

Asíntota horizontal: y = 1.



9. a)
$$\int \frac{6x}{2\sqrt{5+3x^2}} dx = \sqrt{5+3x^2} + C$$

b)
$$\frac{7}{3} \int \frac{dx}{x-3} - \frac{4}{3} \int \frac{dx}{x} = \frac{7}{3} \ln|x-3| - \frac{4}{3} \ln|x| + C$$

10. a)
$$A = \int_0^1 e^{-x} dx = [-e^{-x}]_0^1 = 1 - \frac{1}{e} u^2$$

b)
$$V = \pi \int_0^1 (e^{-x})^2 dx = \pi \left[-\frac{e^{-2x}}{2} \right]_0^1 = \frac{\pi}{2} \left[1 - \frac{1}{e^2} \right] u^3$$