Problema 1 Sea $f: R \longrightarrow R$ definida por $f(x) = x^3 + ax^2 + bx + c$.

- 1. Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abcisa $x=\frac{1}{2}$ y que la recta tangente en el punto de abcisa x=0 tenga por ecuación y=5-6x.
- 2. Para $a=3,\,b=-9$ y c=8, calcula los extremos relativos de f (abcisas donde se obtienen y valores que alcanzan)

(Andalucía junio-2014) Solución:

1. $f(x) = x^3 + ax^2 + bx + c$, $f'(x) = 3x^2 + 2ax + b$, f''(x) = 6x + 2aLa pendiente de la recta m = f'(0) = -6 y como el punto de tangencia es común a la gráfica de f y a la recta tangente f(0) = 5 - 0 = 5:

$$\begin{cases} f''(1/2) = 0 \Longrightarrow 3 + 2a = 0 \Longrightarrow a = -3/2 \\ f'(0) = -6 \Longrightarrow b = -6 \\ f(0) = 5 \Longrightarrow c = 5 \end{cases} \Longrightarrow P(x) = x^3 - \frac{2}{3}x^2 - 6x + 5$$

2.

$$f(x) = x^3 + 3x^2 - 9x + 8$$
, $f'(x) = 3x^2 + 6x - 9 = 3(x^2 + 2x - 3) = 0 \Longrightarrow x = 1$, $x = -3$

	$(-\infty, -3)$	(-3,1)	$(0,+\infty)$
f'(x)	+	_	+
f(x)	creciente	decreciente	creciente

La función f es creciente en $(-\infty, -3) \cup (1, \infty)$ y decreciente en (-3, 1). Presenta un máximo relativo en el punto (-3, 35) y un mínimo relativo en el punto (1, 3).

Problema 2 Sea f la función definida por $f(x) = x \ln(x+1)$ para x > -1 (ln denota logaritmo neperiano). Determina la primitiva de f cuya gráfica pasa por el punto (1,0). (Andalucía junio-2014)

Solución:

$$F(x) = \int x \ln(x+1) dx = \frac{x^2 \ln|x+1|}{2} - \frac{x^2}{4} + \frac{x}{2} - \frac{\ln|x+1|}{2} + C = \frac{2(x^2 - 1) \ln|x+1| + x(2-x)}{4} + C$$

$$F(1) = 0 \Longrightarrow C = -\frac{1}{4}$$

$$F(x) = \frac{2(x^2 - 1)\ln|x + 1| + x(2 - x)}{4} - \frac{1}{4} = \frac{2(x^2 - 1)\ln|x + 1| + x(2 - x) - 1}{4}$$

Problema 3 Calcular

1. Determine, si existen, los máximos y los mínimos relativos y los puntos de inflexión de la función $g(x)=\frac{e^x}{x+1}$

$$2. \lim_{x \longrightarrow +\infty} \left(\sqrt{3x^2 + 2x + 2} - \sqrt{3x^2 + x} \right)$$

(Aragón junio-2014)

Solución:

1.

$$g'(x) = \frac{xe^x}{(x+1)^2} = 0 \Longrightarrow x = 0$$

		$(-\infty,0)$	$(0,+\infty)$
	f'(x)	_	+
ſ	f(x)	decreciente	creciente

La función decrece en el $(-\infty, -1) \cup (-1, 0)$, crece en $(0, \infty)$ y presenta un mínimo en el punto (0, 1).

$$g''(x) = \frac{e^x(x^2+1)}{(x+1)^3} \neq 0 \Longrightarrow$$
 no hay puntos de inflexión

$$\lim_{x \longrightarrow +\infty} \left(\sqrt{3x^2 + 2x + 2} - \sqrt{3x^2 + x} \right) = \frac{\sqrt{3}}{6}$$

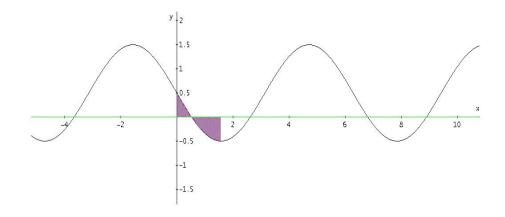
Problema 4 Considere la función $f(x) = \frac{1}{2} - \sin x$

- 1. Dibuje el recinto acotado comprendido entre la gráfica de f(x), el eje OX y las rectas x=0 y $x=\frac{\pi}{2}$.
- 2. Calcular el área del recinto anterior.

(Asturias junio-2014)

Solución:

1. Dibujamos la función:



■ Puntos de corte: Con el eje OY el punto (0, 1/2) y con el eje OX los puntos $(\pi/6, 0)$ y $5\pi/6, 0)$ en el intervalo $[0, 2\pi]$:

$$\frac{1}{2} - \sin x = 0 \Longrightarrow x = \frac{\pi}{6}, \ x = \frac{5\pi}{6}$$

- Máximos, mínimos y puntos de inflexión: $f'(x) = -\cos x = 0 \Longrightarrow x = \frac{\pi}{2}, \quad x = \frac{3\pi}{2}$ $f''(x) = \sin x = 0 \Longrightarrow x = \pi, \quad x = 0 \text{ puntos de inflexión.}$ $f''\left(\frac{\pi}{2}\right) = 1 > 0 \Longrightarrow \left(\frac{\pi}{2}, -\frac{1}{2}\right) \text{ es un mínimo.}$ $f''\left(\frac{3\pi}{2}\right) = -1 < 0 \Longrightarrow \left(\frac{3\pi}{2}, \frac{3}{2}\right) \text{ es un máximo.}$
- 2. Tendremos que calcular las áreas S_1 con los límites de integración entre 0 y $\pi/6$ y S_2 con los límites de integración entre $\pi/6$ y $\pi/2$

$$F(x) = \int f(x) dx = \int \left(\frac{1}{2} - \sin x\right) dx = \frac{x}{2} + \cos x$$

$$S_1 = \int_0^{\pi/6} f(x) dx = F(\pi/6) - F(0) = \frac{\pi + 6\sqrt{3} - 12}{12}$$

$$S_2 = \int_{\pi/6}^{\pi/2} f(x) dx = F(\pi/2) - F(\pi/6) = \frac{2\pi + 6\sqrt{3}}{12}$$

$$S = |S_1| + |S_2| = \frac{12(\sqrt{3} - 1) - \pi}{12} u^2$$

Problema 5 Considera la función:

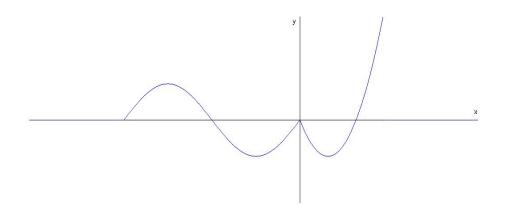
$$f(x) = \begin{cases} \sin x & \text{si } x \in [-2\pi, 0) \\ x^2 - 2x & \text{si } x \in [0, 3] \end{cases}$$

Se pide:

- 1. Estudia si la función es derivable en x = 0.
- 2. Calcula los punto de corte con los ejes. Determina los intervalos de crecimiento y decrecimiento de la función f. Dibuja su gráfica.
- 3. Calcula el área de la región limitada por la gráfica de la función f, el eje de abcisas (y=0) y las rectas verticales x=0 y x=3.

(Cantabria junio-2014)

Solución:



1. Continuidad en x = 0

$$\lim_{x \longrightarrow 0^{-}} f(x) = \lim_{x \longrightarrow 0^{-}} \sin x = 0$$

$$\lim_{x \longrightarrow 0^{+}} f(x) = \lim_{x \longrightarrow 0^{+}} (x^{2} - 2x) = 0$$

$$f(0) = 0$$

Luego f(x) es continua en x = 0..

$$f'(x) = \begin{cases} \cos x & \text{si } x \in [-2\pi, 0) \\ 2x - 2 & \text{si } x \in [0, 3] \end{cases}$$

Derivabilidad en x=0: $f'(0^-)=1\neq f'(0^+)=-2$ luego no es derivable en x=0.

2. • Puntos de Corte: $(-\pi, 0)$, $(-2\pi, 0)$, (0, 0) y (2, 0)

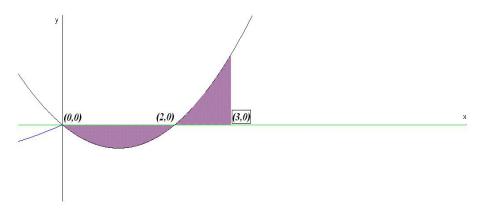
■ Monotonía: En $[-2\pi,0)$ tenemos $f'(x)=\cos x=0 \implies x=-\pi/2, \ x=-3\pi/2.$ En $[0,3]: 2x-2=0 \implies x=1$

		$(-2\pi, -3\pi/2)$	$(-3\pi/2, -\pi/2)$	$(-\pi/2,0)$	(0,1)	(1,3)
	f'(x)	+	_	+	_	+
ſ	f(x)	creciente	decreciente	creciente	decreciente	creciente

Tiene un máximo en el punto $(-3\pi/2, 1)$ y mínimos en los puntos $(-\pi/2, -1)$ y (1, -1).

Tiene el punto de inflexión $(-\pi, 0)$

3. Tendremos que calcular las áreas S_1 con los límites de integración entre 0 y $\pi/6$ y S_2 con los límites de integración entre $\pi/6$ y $\pi/2$



$$F(x) = \int f(x) dx = \int (x^2 - 2x) dx = \frac{x^3}{3} - x^2$$

$$S_1 = \int_0^2 f(x) dx = F(2) - F(0) = \frac{4}{3}$$

$$S_2 = \int_2^3 f(x) dx = F(3) - F(2) = -\frac{4}{3}$$

$$S = |S_1| + |S_2| = \frac{8}{3} u^2$$