LEYES BINOMIAL Y NORMAL Resumen

1) Distribución binomial

Si realizamos n pruebas de Bernoulli, esto es, n experimentos aleatorios independientes en los que cabe, en cada uno de ellos, dos resultados mutuamente excluyentes (E ="éxito" ó F = "fracaso"), con probabilidades respectivas p = P(E) q = 1 - p = P(F), si consideramos la variable aleatoria:

 $X = n^{\circ}$ de éxitos en las *n* realizaciones

entonces, la probabilidad de obtener en ellas k éxitos en total $(0 \le k \le n)$ es:

$$P(X=k) = \binom{n}{k} p^k q^{n-k}$$

 $P(X=k) = \binom{n}{k} p^k q^{n-k}$ donde el número combinatorio $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, siendo $a! = a(a-1) \cdot ... \cdot 2 \cdot 1$; 1! = 1;

0! = 1. (a! = "a factorial" of "factorial de a", y el número combinatorio se lee "n sobre k").

Se dice que X sigue una Distribución Binomial de parámetros n y p: $X \in B(n, p)$. Sus media y desviación típica poblacionales valen:

$$\mu = np$$
; $\sigma = \sqrt{npq}$

Una Binomial es una variable aleatoria discreta (toma valores aislados: entre dos valores que puede tomar la variable, hay valores que no puede tomar).

2) Distribución normal

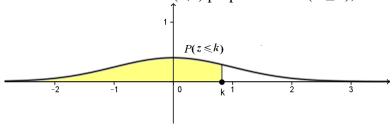
Es una distribución de probabilidad continua (puede tomar cualquier valor, dentro del rango en que puede moverse). Es el modelo probabilístico más importante.

La notación estándar es $X \in N(\mu; \sigma)$, siendo $\mu =$ media poblacional y $\sigma =$ desviación típica poblacional.

En los problemas nos van a decir que el experimento aleatorio se ajusta a una distribución Normal. Esto se comprueba con determinados contrastes que no vamos a estudiar.

Normal N(0;1): Uso de las tablas

Las tablas de una variable aleatoria $Z \in N(0;1)$ proporcionan $P(Z \le k)$, siendo $k \ge 0$.



Uso:

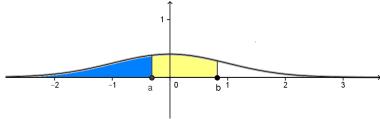
1) Si conocemos k, para hallar $P(Z \le k)$ buscamos la fila correspondiente a la unidad y primer decimal y la columna correspondiente al segundo decimal. El número del interior de la tabla, donde se cruzan, es la probabilidad $P(Z \le k)$.

Ejemplo: $P(Z < 1.96) = 0.975$
Nota: Por tratarse de una distribución
continua, $P(Z = número) = 0$. Por tanto,
P(Z < 1.96) = P(Z < 1.96)

	CENTÉSIMAS			
k			6	
1,9			0,9750	

Casos que pueden presentarse usando las tablas de la N(0;1) (no se distingue entre <y \leq , ni entre > y \geq , como hemos dicho en el ejemplo; $k \geq 0$):

- 1. P(Z < k): Lo buscamos en las tablas de la forma descrita.
- 2. P(Z > k) = 1 P(Z < k) (el área bajo la totalidad de la curva es 1).
- 3. P(Z < -k) = P(Z > k) = 1 P(Z < k) (por simetría de la curva).
- 4. P(Z > -k) = P(Z < k) (por simetría de la curva).
- 5. P(a < Z < b) = P(Z < b) P(Z < a) a < b, cualesquiera. En el gráfico siguiente, P(Z < b) es el área bajo la curva desde $-\infty$ hasta b (zona azul + amarilla), a la que restaríamos el área azul, que es P(Z < a):



2) Si conocemos la probabilidad $P(Z \le k)$ y queremos hallar k, buscamos la probabilidad conocida en el interior de la tabla; k es la fila y columna que al cruzarse dan dicho número (la fila da la unidad y primer decimal; la columna, el segundo decimal). Si $P(Z \le k) < 0.5$, las tablas no nos proporcionan el valor de k. Calculamos k, de forma que $P(Z \le k) = 1 - P(Z \le k)$. Entonces, k = -k. Ejemplo: Hallar k tal que $P(Z \le k) = 0.3$. Buscamos k, k = 0.3. P(k = 0.3) P(k = 0.3

Normal $N(\mu; \sigma)$

Si
$$X \in N(\mu; \sigma) \implies z = \frac{X - \mu}{\sigma} \in N(0; 1)$$
 ("tipificación de la normal")

Ejemplo: Si
$$X \in N(18;4)$$
 \Rightarrow $P(11 \le X < 25) = P\left(\frac{11-18}{4} \le z < \frac{25-18}{4}\right) =$
= $P(-1.75 \le z < 1.75) = P(z < 1.75) - P(z < -1.75) = P(z < 1.75) - P(z > 1.75) =$
= $P(z < 1.75) - [1 - P(z < 1.75)] = 2P(z < 1.75) - 1 = 2 \cdot 0.9599 - 1 = 0.9198$

Otras consideraciones sobre la Normal. Aproximación de la Binomial por una Normal.

- En el intervalo ($\mu \sigma$, $\mu + \sigma$), el área encerrada es 0,6826 (68,26% del total)
- En $(\mu 2\sigma, \mu + 2\sigma)$, es 0,9544 (95,44% del total)
- En $(\mu 3\sigma, \mu + 3\sigma)$, es 0.9973 (99,73% del total)

Cuando aumentan los datos observados, muchas distribuciones de probabilidad se pueden aproximar mediante una normal bajo ciertas condiciones. Concretamente, para la <u>binomial</u> usamos:

- Teorema de Moivre-Laplace (caso particular del *Teorema Central del Límite*): "Si $X \in B(n, p)$, entonces, X se puede aproximar mediante una normal $N(np, \sqrt{npq})$ ". La aproximación es, en general, buena, cuando $n \ge 30$. (A veces, se pide también que $n \cdot p \ge 5$ y $n \cdot q \ge 5$).
- Corrección por continuidad de Yates (o de Fisher): La aproximación de una variable discreta X por una continua, a la que llamaremos X', genera un cierto error. Si la variable discreta X toma valores enteros y consecutivos, cuando aproximamos mediante la continua X', cada uno de ellos lo sustituimos por el intervalo que va desde 0.5 unidades menos a 0.5 unidades más. Así:

$$P(X = a) = P(a - 0.5 \le X' \le a + 0.5).$$
 Y, por tanto:
 $O(X \le a) = P(X' \le a + 0.5)$ $O(X \ge a) = P(X' \ge a - 0.5)$
 $O(X \le a) = P(X' \le a - 0.5)$ $O(X \le a) = P(A + 0.5 \le X' \le b - 0.5)$
 $O(A \le A) = P(A' \ge a + 0.5)$ $O(A \le A' \le b) = P(A - 0.5 \le A' \le b + 0.5)$