QUÍMICA

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

CURSO 2015-2016

Instrucciones:

- a) Duración: 1 hora y 30 minutos.
- b) Elija y desarrolle una opción completa, sin mezclar cuestiones de ambas. Indique, **claramente**, la opción elegida.
- c) No es necesario copiar la pregunta, basta con poner su número.
- d) Se podrá responder a las preguntas en el orden que desee.
- e) Puntuación: Cuestiones (nº 1, 2, 3 y 4) hasta 1,5 puntos cada una. Problemas (nº 5 y 6) hasta 2 puntos cada uno.
- f) Exprese sólo las ideas que se piden. Se valorará positivamente la concreción en las respuestas y la capacidad de síntesis.
- g) Se permitirá el uso de calculadoras que no sean programables, gráficas ni con capacidad para almacenar o transmitir datos.

OPCIÓN A

- 1.- Formule o nombre los siguientes compuestos: a) Óxido de platino(II) b) Sulfito de cadmio
- c) Ciclopenteno d) (NH₄)₂S e) Cr(OH)₃ f) CH₃C(CH₃)₂CH₂CH₃.
- 2.- Sean los elementos X e Y de número atómico 38 y 35, respectivamente.
- a) Escriba sus configuraciones electrónicas.
- b) Razone cuáles serán sus iones más estables.
- c) Justifique cuál de estos iones tiene mayor radio.
- **3.-** La síntesis industrial del metanol se rige por el siguiente equilibrio homogéneo:

CO (g) +
$$2H_2$$
 (g) \rightleftharpoons CH₃OH (g) $\Delta H = -112,86$ kJ.

A 300°C, $K_P = 9.28 \cdot 10^{-3}$. Responda verdadero o falso, de forma razonada:

- a) El valor de K_C será mayor que el de K_{P.}
- b) Aumentando la presión se obtendrá mayor rendimiento en el proceso de síntesis.
- c) Una disminución de la temperatura supondrá un aumento de las constantes de equilibrio.

Dato: R = $0.082 \text{ atm} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.

- 4.- De los siguientes compuestos: CH₃CHClCH₂OH; ClCH₂CH₂CH₂OH; ClCH₂CH₂COCH₃.
- a) Justifique qué compuesto puede presentar isomería óptica.
- b) Indique qué compuestos son isómeros de posición.
- c) Indique qué compuesto es isómero funcional del CICH₂CH₂CH₂CHO.
- **5.- a)** Calcule el calor de formación del metano a presión constante, en condiciones estándar y a 25°C, a partir de los siguientes datos:

$$\begin{array}{ll} C \ (s) + O_2 \ (g) \longrightarrow CO_2 \ (g) & \Delta H^\circ = -393,5 \ kJ/mol \\ H_2 \ (g) + \frac{1}{2} \ O_2 \ (g) \longrightarrow H_2O \ (l) & \Delta H^\circ = -285,8 \ kJ/mol \\ CH_4 \ (g) + 2O_2 \ (g) \longrightarrow CO_2 \ (g) + 2H_2O \ (l) & \Delta H^\circ = -890,4 \ kJ/mol \\ \end{array}$$

- **b)** Calcule el calor producido cuando se queman 10 m³ de metano medidos a 1 atm de presión y a 25°C. Dato: R = 0.082 atm·L·mol⁻¹·K⁻¹.
- **6.- a)** Calcule los gramos de ácido cloroso, $HCIO_2$ (K_a =0,011) que se necesitan para preparar 100 mL de disolución de pH = 2.
- b) Calcule el grado de disociación del ácido cloroso en dicha disolución.

Datos: Masas atómicas H=1; Cl=35,5; O=16.

QUÍMICA

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

CURSO 2015-2016

Instrucciones:

- a) Duración: 1 hora y 30 minutos.
- b) Elija y desarrolle una opción completa, sin mezclar cuestiones de ambas. Indique, **claramente**, la opción elegida.
- c) No es necesario copiar la pregunta, basta con poner su número.
- d) Se podrá responder a las preguntas en el orden que desee.
- e) Puntuación: Cuestiones (nº 1, 2, 3 y 4) hasta 1,5 puntos cada una. Problemas (nº 5 y 6) hasta 2 puntos cada uno.
- f) Exprese sólo las ideas que se piden. Se valorará positivamente la concreción en las respuestas y la capacidad de síntesis.
- g) Se permitirá el uso de calculadoras que no sean programables, gráficas ni con capacidad para almacenar o transmitir datos.

OPCIÓN B

- **1.-** Formule o nombre los siguientes compuestos: **a)** Hidruro de estaño(IV) **b)** Ácido carbónico **c)** Ácido 3-cloropropanoico **d)** SrI₂ **e)** CoPO₄ **f)** (CH₃)₂CHCONH₂.
- **2.-** Tenemos en un recipiente 100 g de metionina ($C_5H_{11}NO_2S$) y en otro recipiente 100 g de arginina ($C_6H_{14}N_4O_2$). Calcule cuál contiene mayor número de:
- a) Moles.
- b) Masa de nitrógeno.
- c) Átomos.

Datos: Masas atómicas C=12; H=1; N=14; O=16; S=32.

- 3.- Dadas las moléculas BF₃ y PF₃:
- a) Represente sus estructuras de Lewis.
- b) Prediga razonadamente la geometría de cada una de ellas según la TRPECV.
- c) Determine, razonadamente, si estas moléculas son polares.
- **4.-** La constante de acidez del ácido hipocloroso (HClO) es $K_a = 3,0.10^{-8}$
- a) Escriba la reacción química del agua con el ácido hipocloroso (HClO) y la expresión de su constante de acidez.
- **b)** Escriba la reacción química del agua con la base conjugada del ácido HClO y la expresión de su constante de basicidad.
- c) Calcule la constante de basicidad de la base anterior.
- 5.- A 25°C, el producto de solubilidad del Cd(OH)₂ es 2,5·10⁻¹⁴.
- a) ¿Cuántos gramos de Cd(OH)₂ pueden disolverse en 1,5 litros de agua, a esa temperatura?
- b) ¿Cuál será el pH de la disolución resultante?

Datos: Masas atómicas Cd=112,4; H=1; O=16.

- **6.- a)** El cinc metálico puede reaccionar en medio ácido oxidándose a Zn^{2+} , según la siguiente reacción redox espontánea: $Zn + 2H^+ \rightarrow Zn^{2+} + H_2$. ¿Qué volumen de hidrógeno, medido a 700 mmHg y 77°C, se desprenderá si se disuelven completamente 0,5 moles de cinc?
- **b)** Al realizar la electrolisis de una disolución de una sal de Zn^{2+} aplicando durante 2 horas una intensidad de 1,5 A, se depositan en el cátodo 3,66 g de metal. Calcule la masa atómica del cinc. Datos: F= 96500 C; R = 0,082 atm·L·mol⁻¹·K⁻¹.